BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 22784033)

  • 1. Acceleration of protease effect on Staphylococcus aureus biofilm dispersal.
    Park JH; Lee JH; Cho MH; Herzberg M; Lee J
    FEMS Microbiol Lett; 2012 Oct; 335(1):31-8. PubMed ID: 22784033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracellular protease in Actinomycetes culture supernatants inhibits and detaches Staphylococcus aureus biofilm formation.
    Park JH; Lee JH; Kim CJ; Lee JC; Cho MH; Lee J
    Biotechnol Lett; 2012 Apr; 34(4):655-61. PubMed ID: 22160331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pattern differentiation in co-culture biofilms formed by Staphylococcus aureus and Pseudomonas aeruginosa.
    Yang L; Liu Y; Markussen T; Høiby N; Tolker-Nielsen T; Molin S
    FEMS Immunol Med Microbiol; 2011 Aug; 62(3):339-47. PubMed ID: 21595754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biofilm-forming capacity of Staphylococcus epidermidis, Staphylococcus aureus, and Pseudomonas aeruginosa from ocular infections.
    Hou W; Sun X; Wang Z; Zhang Y
    Invest Ophthalmol Vis Sci; 2012 Aug; 53(9):5624-31. PubMed ID: 22736609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antibiofilm activity of Streptomyces sp. BFI 230 and Kribbella sp. BFI 1562 against Pseudomonas aeruginosa.
    Kim YG; Lee JH; Kim CJ; Lee JC; Ju YJ; Cho MH; Lee J
    Appl Microbiol Biotechnol; 2012 Dec; 96(6):1607-17. PubMed ID: 22722911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ionic liquid 1-alkyl-3-methylimidazolium demonstrates comparable antimicrobial and antibiofilm behavior to a cationic surfactant.
    Venkata Nancharaiah Y; Reddy GK; Lalithamanasa P; Venugopalan VP
    Biofouling; 2012; 28(10):1141-9. PubMed ID: 23092364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential effects of Pseudomonas aeruginosa on biofilm formation by different strains of Staphylococcus epidermidis.
    Pihl M; Davies JR; Chávez de Paz LE; Svensäter G
    FEMS Immunol Med Microbiol; 2010 Aug; 59(3):439-46. PubMed ID: 20528934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro production of biofilm in a flow cell system in a strain of Pseudomonas aeruginosa and Staphylococcus aureus and determination of efficiency of ciprofloxacin against them.
    Gupta S; Agarwal S; Sahoo DR; Muralidharan S
    Indian J Pathol Microbiol; 2011; 54(3):569-71. PubMed ID: 21934223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilization of proteases on chitosan for the development of films with anti-biofilm properties.
    Elchinger PH; Delattre C; Faure S; Roy O; Badel S; Bernardi T; Taillefumier C; Michaud P
    Int J Biol Macromol; 2015 Jan; 72():1063-8. PubMed ID: 25451753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The antimicrobial agent, Next-Science, inhibits the development of Staphylococcus aureus and Pseudomonas aeruginosa biofilms on tympanostomy tubes.
    Banerjee D; Tran PL; Colmer-Hamood JA; Wang JC; Myntti M; Cordero J; Hamood AN
    Int J Pediatr Otorhinolaryngol; 2015 Nov; 79(11):1909-14. PubMed ID: 26388185
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Magalhães AP; Jorge P; Pereira MO
    Crit Rev Microbiol; 2019; 45(5-6):712-728. PubMed ID: 31835971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitory efficacy of various antibiotics on matrix and viable mass of Staphylococcus aureus and Pseudomonas aeruginosa biofilms.
    Toté K; Berghe DV; Deschacht M; de Wit K; Maes L; Cos P
    Int J Antimicrob Agents; 2009 Jun; 33(6):525-31. PubMed ID: 19179053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria.
    Borges A; Saavedra MJ; Simões M
    Biofouling; 2012; 28(7):755-67. PubMed ID: 22823343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNase1L2 suppresses biofilm formation by Pseudomonas aeruginosa and Staphylococcus aureus.
    Eckhart L; Fischer H; Barken KB; Tolker-Nielsen T; Tschachler E
    Br J Dermatol; 2007 Jun; 156(6):1342-5. PubMed ID: 17459041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Peganum harmala peptides on the transcriptional activity of biofilm related genes in sensitive and resistant strains of Pseudomonas aeruginosa and Staphylococcus aureus.
    Mirza R; Azeem M; Qaisar U
    Pak J Pharm Sci; 2019 Sep; 32(5(Supplementary)):2341-2345. PubMed ID: 31894064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protease production by Staphylococcus epidermidis and its effect on Staphylococcus aureus biofilms.
    Vandecandelaere I; Depuydt P; Nelis HJ; Coenye T
    Pathog Dis; 2014 Apr; 70(3):321-31. PubMed ID: 24436195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production.
    Lee JH; Kim YG; Cho MH; Lee J
    Microbiol Res; 2014 Dec; 169(12):888-96. PubMed ID: 24958247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Malachite green-conjugated multi-walled carbon nanotubes potentiate antimicrobial photodynamic inactivation of planktonic cells and biofilms of
    Anju VT; Paramanantham P; Siddhardha B; Sruthil Lal SB; Sharan A; Alyousef AA; Arshad M; Syed A
    Int J Nanomedicine; 2019; 14():3861-3874. PubMed ID: 31213806
    [No Abstract]   [Full Text] [Related]  

  • 19. Differential gene expression in planktonic and biofilm cells of multiple antibiotic-resistant Salmonella Typhimurium and Staphylococcus aureus.
    He X; Ahn J
    FEMS Microbiol Lett; 2011 Dec; 325(2):180-8. PubMed ID: 22092573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of oleic acid (cis-9-octadecenoic acid) on bacterial viability and biofilm production in Staphylococcus aureus.
    Stenz L; François P; Fischer A; Huyghe A; Tangomo M; Hernandez D; Cassat J; Linder P; Schrenzel J
    FEMS Microbiol Lett; 2008 Oct; 287(2):149-55. PubMed ID: 18754790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.