These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
310 related articles for article (PubMed ID: 22784033)
1. Acceleration of protease effect on Staphylococcus aureus biofilm dispersal. Park JH; Lee JH; Cho MH; Herzberg M; Lee J FEMS Microbiol Lett; 2012 Oct; 335(1):31-8. PubMed ID: 22784033 [TBL] [Abstract][Full Text] [Related]
2. Extracellular protease in Actinomycetes culture supernatants inhibits and detaches Staphylococcus aureus biofilm formation. Park JH; Lee JH; Kim CJ; Lee JC; Cho MH; Lee J Biotechnol Lett; 2012 Apr; 34(4):655-61. PubMed ID: 22160331 [TBL] [Abstract][Full Text] [Related]
3. Pattern differentiation in co-culture biofilms formed by Staphylococcus aureus and Pseudomonas aeruginosa. Yang L; Liu Y; Markussen T; Høiby N; Tolker-Nielsen T; Molin S FEMS Immunol Med Microbiol; 2011 Aug; 62(3):339-47. PubMed ID: 21595754 [TBL] [Abstract][Full Text] [Related]
4. Biofilm-forming capacity of Staphylococcus epidermidis, Staphylococcus aureus, and Pseudomonas aeruginosa from ocular infections. Hou W; Sun X; Wang Z; Zhang Y Invest Ophthalmol Vis Sci; 2012 Aug; 53(9):5624-31. PubMed ID: 22736609 [TBL] [Abstract][Full Text] [Related]
5. Antibiofilm activity of Streptomyces sp. BFI 230 and Kribbella sp. BFI 1562 against Pseudomonas aeruginosa. Kim YG; Lee JH; Kim CJ; Lee JC; Ju YJ; Cho MH; Lee J Appl Microbiol Biotechnol; 2012 Dec; 96(6):1607-17. PubMed ID: 22722911 [TBL] [Abstract][Full Text] [Related]
6. The ionic liquid 1-alkyl-3-methylimidazolium demonstrates comparable antimicrobial and antibiofilm behavior to a cationic surfactant. Venkata Nancharaiah Y; Reddy GK; Lalithamanasa P; Venugopalan VP Biofouling; 2012; 28(10):1141-9. PubMed ID: 23092364 [TBL] [Abstract][Full Text] [Related]
7. Differential effects of Pseudomonas aeruginosa on biofilm formation by different strains of Staphylococcus epidermidis. Pihl M; Davies JR; Chávez de Paz LE; Svensäter G FEMS Immunol Med Microbiol; 2010 Aug; 59(3):439-46. PubMed ID: 20528934 [TBL] [Abstract][Full Text] [Related]
8. In vitro production of biofilm in a flow cell system in a strain of Pseudomonas aeruginosa and Staphylococcus aureus and determination of efficiency of ciprofloxacin against them. Gupta S; Agarwal S; Sahoo DR; Muralidharan S Indian J Pathol Microbiol; 2011; 54(3):569-71. PubMed ID: 21934223 [TBL] [Abstract][Full Text] [Related]
9. Immobilization of proteases on chitosan for the development of films with anti-biofilm properties. Elchinger PH; Delattre C; Faure S; Roy O; Badel S; Bernardi T; Taillefumier C; Michaud P Int J Biol Macromol; 2015 Jan; 72():1063-8. PubMed ID: 25451753 [TBL] [Abstract][Full Text] [Related]
10. The antimicrobial agent, Next-Science, inhibits the development of Staphylococcus aureus and Pseudomonas aeruginosa biofilms on tympanostomy tubes. Banerjee D; Tran PL; Colmer-Hamood JA; Wang JC; Myntti M; Cordero J; Hamood AN Int J Pediatr Otorhinolaryngol; 2015 Nov; 79(11):1909-14. PubMed ID: 26388185 [TBL] [Abstract][Full Text] [Related]
12. Inhibitory efficacy of various antibiotics on matrix and viable mass of Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Toté K; Berghe DV; Deschacht M; de Wit K; Maes L; Cos P Int J Antimicrob Agents; 2009 Jun; 33(6):525-31. PubMed ID: 19179053 [TBL] [Abstract][Full Text] [Related]
13. The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria. Borges A; Saavedra MJ; Simões M Biofouling; 2012; 28(7):755-67. PubMed ID: 22823343 [TBL] [Abstract][Full Text] [Related]
15. Influence of Peganum harmala peptides on the transcriptional activity of biofilm related genes in sensitive and resistant strains of Pseudomonas aeruginosa and Staphylococcus aureus. Mirza R; Azeem M; Qaisar U Pak J Pharm Sci; 2019 Sep; 32(5(Supplementary)):2341-2345. PubMed ID: 31894064 [TBL] [Abstract][Full Text] [Related]
16. Protease production by Staphylococcus epidermidis and its effect on Staphylococcus aureus biofilms. Vandecandelaere I; Depuydt P; Nelis HJ; Coenye T Pathog Dis; 2014 Apr; 70(3):321-31. PubMed ID: 24436195 [TBL] [Abstract][Full Text] [Related]
17. ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production. Lee JH; Kim YG; Cho MH; Lee J Microbiol Res; 2014 Dec; 169(12):888-96. PubMed ID: 24958247 [TBL] [Abstract][Full Text] [Related]
18. Malachite green-conjugated multi-walled carbon nanotubes potentiate antimicrobial photodynamic inactivation of planktonic cells and biofilms of Anju VT; Paramanantham P; Siddhardha B; Sruthil Lal SB; Sharan A; Alyousef AA; Arshad M; Syed A Int J Nanomedicine; 2019; 14():3861-3874. PubMed ID: 31213806 [No Abstract] [Full Text] [Related]
19. Differential gene expression in planktonic and biofilm cells of multiple antibiotic-resistant Salmonella Typhimurium and Staphylococcus aureus. He X; Ahn J FEMS Microbiol Lett; 2011 Dec; 325(2):180-8. PubMed ID: 22092573 [TBL] [Abstract][Full Text] [Related]
20. Impact of oleic acid (cis-9-octadecenoic acid) on bacterial viability and biofilm production in Staphylococcus aureus. Stenz L; François P; Fischer A; Huyghe A; Tangomo M; Hernandez D; Cassat J; Linder P; Schrenzel J FEMS Microbiol Lett; 2008 Oct; 287(2):149-55. PubMed ID: 18754790 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]