These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 227841)

  • 21. Studies on phosphate transport in Escherichia coli. II. Effects of metabolic inhibitors and divalent cations.
    Rae AS; Strickland KP
    Biochim Biophys Acta; 1976 May; 433(3):564-82. PubMed ID: 132192
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Induction of tyrosine aminotransferase in H-35 hepatoma cells by cAMP captured in phospholipid vesicles.
    Culpepper JA; Liu AY
    J Cell Biol; 1981 Jan; 88(1):89-95. PubMed ID: 6110670
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oxidase and periplasmic cytochrome assembly in Escherichia coli K-12: CydDC and CcmAB are not required for haem-membrane association.
    Cook GM; Poole RK
    Microbiology (Reading); 2000 Feb; 146 ( Pt 2)():527-536. PubMed ID: 10708391
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transport of C4-dicarboxylates by anaerobically grown Escherichia coli. Energetics and mechanism of exchange, uptake and efflux.
    Engel P; Krämer R; Unden G
    Eur J Biochem; 1994 Jun; 222(2):605-14. PubMed ID: 8020497
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of an active transport system for calcium in inverted membrane vesicles of Escherichia coli.
    Tsuchiya T; Rosen BP
    J Biol Chem; 1975 Oct; 250(19):7687-92. PubMed ID: 240836
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glutamate excretion in Escherichia coli: dependency on the relA and spoT genotype.
    Burkovski A; Weil B; Krämer R
    Arch Microbiol; 1995 Jul; 164(1):24-8. PubMed ID: 7646316
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transport of the glutathione-methylmercury complex across liver canalicular membranes on reduced glutathione carriers.
    Dutczak WJ; Ballatori N
    J Biol Chem; 1994 Apr; 269(13):9746-51. PubMed ID: 8144567
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tobramycin uptake in Escherichia coli membrane vesicles.
    Leviton IM; Fraimow HS; Carrasco N; Dougherty TJ; Miller MH
    Antimicrob Agents Chemother; 1995 Feb; 39(2):467-75. PubMed ID: 7726517
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphate exchange in the pit transport system in Escherichia coli.
    Rosenberg H; Russell LM; Jacomb PA; Chegwidden K
    J Bacteriol; 1982 Jan; 149(1):123-30. PubMed ID: 7033203
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel aspect of cyclic 3',5'-adenosine monophosphate synthesis in Escherichia coli 3000A1.
    Hamai Y; Kuno S
    J Biochem; 1983 Jan; 93(1):275-9. PubMed ID: 6302092
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ferrichrome transport in inner membrane vesicles of Escherichia coli K12.
    Negrin RS; Neilands JB
    J Biol Chem; 1978 Apr; 253(7):2339-42. PubMed ID: 344313
    [No Abstract]   [Full Text] [Related]  

  • 32. The regulation of glucose transport by cAMP stimulators via three different mechanisms in rat and human adipocytes.
    Kashiwagi A; Huecksteadt TP; Foley JE
    J Biol Chem; 1983 Nov; 258(22):13685-92. PubMed ID: 6196354
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Requirement of cyclic adenosine 3',5'-monophosphate for the thermosensitive effects of Rts1 in a cyclic adenosine 3',5'-monophosphate-less mutant of Escherichia coli.
    Yamamoto T; Yokota T; Kaji A
    J Bacteriol; 1977 Oct; 132(1):80-9. PubMed ID: 199577
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of carbon sources on the rates of cyclic AMP synthesis, excretion, and degradation, and the ability to produce beta-galactosidase in Escherichia coli.
    Fraser AD; Yamazaki H
    Can J Biochem; 1979 Aug; 57(8):1073-9. PubMed ID: 232000
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of CFTR Cl- conductance in secretion by cellular energy levels.
    Bell CL; Quinton PM
    Am J Physiol; 1993 Apr; 264(4 Pt 1):C925-31. PubMed ID: 7682778
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanisms of Ca2+ transport in plasma membrane vesicles prepared from cultured pituitary cells. II. (Ca2+ + Mg2+)-ATPase-dependent Ca2+ transport activity.
    Barros F; Kaczorowski GJ
    J Biol Chem; 1984 Aug; 259(15):9404-10. PubMed ID: 6146614
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Energy coupling to active transport in anaerobically grown mutants of Escherichia Coli K12.
    Gutowski SJ; Rosenberg H
    Biochem J; 1976 Mar; 154(3):731-4. PubMed ID: 133673
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Energy requirement for pullulanase secretion by the main terminal branch of the general secretory pathway.
    Possot OM; Letellier L; Pugsley AP
    Mol Microbiol; 1997 May; 24(3):457-64. PubMed ID: 9179840
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Artificially induced active transport of amino acid driven by the efflux of a sugar via a heterologous transport system in de-energized Escherichia coli.
    Bentaboulet M; Robin A; Kepes A
    Biochem J; 1979 Jan; 178(1):103-7. PubMed ID: 35159
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Uptake of ferrienterochelin by Escherichia coli: energy dependent stage of uptake.
    Pugsley AP; Reeves P
    J Bacteriol; 1977 Apr; 130(1):26-36. PubMed ID: 140161
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.