These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 22784497)

  • 1. Novel implantable imaging system for enabling simultaneous multiplanar and multipoint analysis for fluorescence potentiometry in the visual cortex.
    Kobayashi T; Motoyama M; Masuda H; Ohta Y; Haruta M; Noda T; Sasagawa K; Tokuda T; Tamura H; Ishikawa Y; Shiosaka S; Ohta J
    Biosens Bioelectron; 2012; 38(1):321-30. PubMed ID: 22784497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional brain fluorescence plurimetry in rat by implantable concatenated CMOS imaging system.
    Kobayashi T; Masuda H; Kitsumoto C; Haruta M; Motoyama M; Ohta Y; Noda T; Sasagawa K; Tokuda T; Shiosaka S; Ohta J
    Biosens Bioelectron; 2014 Mar; 53():31-6. PubMed ID: 24121224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real time in vivo imaging and measurement of serine protease activity in the mouse hippocampus using a dedicated complementary metal-oxide semiconductor imaging device.
    Ng DC; Tamura H; Tokuda T; Yamamoto A; Matsuo M; Nunoshita M; Ishikawa Y; Shiosaka S; Ohta J
    J Neurosci Methods; 2006 Sep; 156(1-2):23-30. PubMed ID: 16542733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. "Optical communication with brain cells by means of an implanted duplex micro-device with optogenetics and Ca(2+) fluoroimaging".
    Kobayashi T; Haruta M; Sasagawa K; Matsumata M; Eizumi K; Kitsumoto C; Motoyama M; Maezawa Y; Ohta Y; Noda T; Tokuda T; Ishikawa Y; Ohta J
    Sci Rep; 2016 Feb; 6():21247. PubMed ID: 26878910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implantable semiconductor biosensor for continuous in vivo sensing of far-red fluorescent molecules.
    O'Sullivan T; Munro EA; Parashurama N; Conca C; Gambhir SS; Harris JS; Levi O
    Opt Express; 2010 Jun; 18(12):12513-25. PubMed ID: 20588377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term voltage-sensitive dye imaging reveals cortical dynamics in behaving monkeys.
    Slovin H; Arieli A; Hildesheim R; Grinvald A
    J Neurophysiol; 2002 Dec; 88(6):3421-38. PubMed ID: 12466458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualizing the cortical representation of whisker touch: voltage-sensitive dye imaging in freely moving mice.
    Ferezou I; Bolea S; Petersen CC
    Neuron; 2006 May; 50(4):617-29. PubMed ID: 16701211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage sensitive dye imaging of transient neuronal assemblies in brain slices under hyperbaric conditions.
    Wlodarczyk A; McMillan PF; Greenfield SA
    Undersea Hyperb Med; 2008; 35(1):35-40. PubMed ID: 18351125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design constraints for mobile, high-speed fluorescence brain imaging in awake animals.
    Osman A; Park JH; Dickensheets D; Platisa J; Culurciello E; Pieribone VA
    IEEE Trans Biomed Circuits Syst; 2012 Oct; 6(5):446-53. PubMed ID: 23853231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of receptive field size from higher harmonics in visuotopic mapping using continuous stimulation optical imaging.
    Vanni MP; Provost J; Lesage F; Casanova C
    J Neurosci Methods; 2010 May; 189(1):138-50. PubMed ID: 20346978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatially selective holographic photoactivation and functional fluorescence imaging in freely behaving mice with a fiberscope.
    Szabo V; Ventalon C; De Sars V; Bradley J; Emiliani V
    Neuron; 2014 Dec; 84(6):1157-69. PubMed ID: 25433638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A unique class of near-infrared functional fluorescent dyes with carboxylic-acid-modulated fluorescence ON/OFF switching: rational design, synthesis, optical properties, theoretical calculations, and applications for fluorescence imaging in living animals.
    Yuan L; Lin W; Yang Y; Chen H
    J Am Chem Soc; 2012 Jan; 134(2):1200-11. PubMed ID: 22176300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noninvasive fluorescence imaging of small animals.
    Zelmer A; Ward TH
    J Microsc; 2013 Oct; 252(1):8-15. PubMed ID: 23841905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A genetically encoded calcium indicator for chronic in vivo two-photon imaging.
    Mank M; Santos AF; Direnberger S; Mrsic-Flogel TD; Hofer SB; Stein V; Hendel T; Reiff DF; Levelt C; Borst A; Bonhoeffer T; Hübener M; Griesbeck O
    Nat Methods; 2008 Sep; 5(9):805-11. PubMed ID: 19160515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CMOS image sensor integrated with micro-LED and multielectrode arrays for the patterned photostimulation and multichannel recording of neuronal tissue.
    Nakajima A; Kimura H; Sawadsaringkarn Y; Maezawa Y; Kobayashi T; Noda T; Sasagawa K; Tokuda T; Ishikawa Y; Shiosaka S; Ohta J
    Opt Express; 2012 Mar; 20(6):6097-108. PubMed ID: 22418489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-definition mapping of neural activity using voltage-sensitive dyes.
    Cinelli AR
    Methods; 2000 Aug; 21(4):349-72. PubMed ID: 10964579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time in vivo imaging of extracellular ATP in the brain with a hybrid-type fluorescent sensor.
    Kitajima N; Takikawa K; Sekiya H; Satoh K; Asanuma D; Sakamoto H; Takahashi S; Hanaoka K; Urano Y; Namiki S; Iino M; Hirose K
    Elife; 2020 Jul; 9():. PubMed ID: 32648544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reliable optical detection of coherent neuronal activity in fast oscillating networks in vitro.
    Reichinnek S; von Kameke A; Hagenston AM; Freitag E; Roth FC; Bading H; Hasan MT; Draguhn A; Both M
    Neuroimage; 2012 Mar; 60(1):139-52. PubMed ID: 22209812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time optical imaging of primary tumor growth and multiple metastatic events in a pancreatic cancer orthotopic model.
    Bouvet M; Wang J; Nardin SR; Nassirpour R; Yang M; Baranov E; Jiang P; Moossa AR; Hoffman RM
    Cancer Res; 2002 Mar; 62(5):1534-40. PubMed ID: 11888932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the efficacy of visual prostheses by decoding ms-LFPs: application to retinal implants.
    Cottaris NP; Elfar SD
    J Neural Eng; 2009 Apr; 6(2):026007. PubMed ID: 19289859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.