These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 22784573)
1. Constructing a gene semantic similarity network for the inference of disease genes. Jiang R; Gan M; He P BMC Syst Biol; 2011; 5 Suppl 2(Suppl 2):S2. PubMed ID: 22784573 [TBL] [Abstract][Full Text] [Related]
2. Constructing an integrated gene similarity network for the identification of disease genes. Tian Z; Guo M; Wang C; Xing L; Wang L; Zhang Y J Biomed Semantics; 2017 Sep; 8(Suppl 1):32. PubMed ID: 29297379 [TBL] [Abstract][Full Text] [Related]
3. Integrating multiple protein-protein interaction networks to prioritize disease genes: a Bayesian regression approach. Zhang W; Sun F; Jiang R BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S11. PubMed ID: 21342540 [TBL] [Abstract][Full Text] [Related]
4. Prioritization of potential candidate disease genes by topological similarity of protein-protein interaction network and phenotype data. Luo J; Liang S J Biomed Inform; 2015 Feb; 53():229-36. PubMed ID: 25460206 [TBL] [Abstract][Full Text] [Related]
5. Prioritization of candidate disease genes by combining topological similarity and semantic similarity. Liu B; Jin M; Zeng P J Biomed Inform; 2015 Oct; 57():1-5. PubMed ID: 26173039 [TBL] [Abstract][Full Text] [Related]
6. Integration of anatomy ontology data with protein-protein interaction networks improves the candidate gene prediction accuracy for anatomical entities. Fernando PC; Mabee PM; Zeng E BMC Bioinformatics; 2020 Oct; 21(1):442. PubMed ID: 33028186 [TBL] [Abstract][Full Text] [Related]
7. Gene gravity-like algorithm for disease gene prediction based on phenotype-specific network. Lin L; Yang T; Fang L; Yang J; Yang F; Zhao J BMC Syst Biol; 2017 Dec; 11(1):121. PubMed ID: 29212543 [TBL] [Abstract][Full Text] [Related]
8. Prioritization of candidate disease genes by enlarging the seed set and fusing information of the network topology and gene expression. Zhang SW; Shao DD; Zhang SY; Wang YB Mol Biosyst; 2014 Jun; 10(6):1400-8. PubMed ID: 24695957 [TBL] [Abstract][Full Text] [Related]
9. Correlating information contents of gene ontology terms to infer semantic similarity of gene products. Gan M Comput Math Methods Med; 2014; 2014():891842. PubMed ID: 24963342 [TBL] [Abstract][Full Text] [Related]
10. Comparative analysis of gene ontology-based semantic similarity measurements for the application of identifying essential proteins. Xue X; Zhang W; Fan A PLoS One; 2023; 18(4):e0284274. PubMed ID: 37083829 [TBL] [Abstract][Full Text] [Related]
11. Improving the measurement of semantic similarity by combining gene ontology and co-functional network: a random walk based approach. Peng J; Zhang X; Hui W; Lu J; Li Q; Liu S; Shang X BMC Syst Biol; 2018 Mar; 12(Suppl 2):18. PubMed ID: 29560823 [TBL] [Abstract][Full Text] [Related]
12. Survey: Enhancing protein complex prediction in PPI networks with GO similarity weighting. Price T; Peña FI; Cho YR Interdiscip Sci; 2013 Sep; 5(3):196-210. PubMed ID: 24307411 [TBL] [Abstract][Full Text] [Related]
13. Prioritization of orphan disease-causing genes using topological feature and GO similarity between proteins in interaction networks. Li M; Li Q; Ganegoda GU; Wang J; Wu F; Pan Y Sci China Life Sci; 2014 Nov; 57(11):1064-71. PubMed ID: 25326068 [TBL] [Abstract][Full Text] [Related]
14. Detecting protein complexes in a PPI network: a gene ontology based multi-objective evolutionary approach. Mukhopadhyay A; Ray S; De M Mol Biosyst; 2012 Nov; 8(11):3036-48. PubMed ID: 22990765 [TBL] [Abstract][Full Text] [Related]
15. Distance-wise pathway discovery from protein-protein interaction networks weighted by semantic similarity. Jaromerska S; Praus P; Cho YR J Bioinform Comput Biol; 2014 Feb; 12(1):1450004. PubMed ID: 24467762 [TBL] [Abstract][Full Text] [Related]
16. A Method for Predicting Protein Complexes from Dynamic Weighted Protein-Protein Interaction Networks. Liu L; Sun X; Song W; Du C J Comput Biol; 2018 Jun; 25(6):586-605. PubMed ID: 29668304 [TBL] [Abstract][Full Text] [Related]
17. Towards prediction and prioritization of disease genes by the modularity of human phenome-genome assembled network. Jiang JQ; Dress AW; Chen M J Integr Bioinform; 2010 Nov; 7(2):. PubMed ID: 21098881 [TBL] [Abstract][Full Text] [Related]
18. Prioritizing disease genes with an improved dual label propagation framework. Zhang Y; Liu J; Liu X; Fan X; Hong Y; Wang Y; Huang Y; Xie M BMC Bioinformatics; 2018 Feb; 19(1):47. PubMed ID: 29422030 [TBL] [Abstract][Full Text] [Related]
19. Discovering large conserved functional components in global network alignment by graph matching. Zhu Y; Li Y; Liu J; Qin L; Yu JX BMC Genomics; 2018 Sep; 19(Suppl 7):670. PubMed ID: 30255780 [TBL] [Abstract][Full Text] [Related]
20. Large-scale identification of adverse drug reaction-related proteins through a random walk model. Chen X; Shi H; Yang F; Yang L; Lv Y; Wang S; Dai E; Sun D; Jiang W Sci Rep; 2016 Nov; 6():36325. PubMed ID: 27805066 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]