These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 22784593)

  • 61. Enrichment of PHA-producing bacteria under continuous substrate supply.
    Marang L; van Loosdrecht MCM; Kleerebezem R
    N Biotechnol; 2018 Mar; 41():55-61. PubMed ID: 29221761
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Industrial waste utilization for low-cost production of raw material oil through microbial fermentation.
    Louhasakul Y; Cheirsilp B
    Appl Biochem Biotechnol; 2013 Jan; 169(1):110-22. PubMed ID: 23151967
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Methodological issues in life cycle assessment of mixed-culture polyhydroxyalkanoate production utilising waste as feedstock.
    Heimersson S; Morgan-Sagastume F; Peters GM; Werker A; Svanström M
    N Biotechnol; 2014 Jun; 31(4):383-93. PubMed ID: 24121250
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Changes in microbial community structure during adaptation towards polyhydroxyalkanoates production.
    Ciesielski S; Klimiuk E; Mozejko J; Nowakowska E; Pokój T
    Pol J Microbiol; 2009; 58(2):131-9. PubMed ID: 19824397
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Metabolic modelling of polyhydroxyalkanoate copolymers production by mixed microbial cultures.
    Dias JM; Oehmen A; Serafim LS; Lemos PC; Reis MA; Oliveira R
    BMC Syst Biol; 2008 Jul; 2():59. PubMed ID: 18611259
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Optimal production of polyhydroxyalkanoates (PHA) in activated sludge fed by volatile fatty acids (VFAs) generated from alkaline excess sludge fermentation.
    Mengmeng C; Hong C; Qingliang Z; Shirley SN; Jie R
    Bioresour Technol; 2009 Feb; 100(3):1399-405. PubMed ID: 18945612
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Anaerobic digestion of olive mill wastewaters in biofilm reactors packed with granular activated carbon and "Manville" silica beads.
    Bertin L; Berselli S; Fava F; Petrangeli-Papini M; Marchetti L
    Water Res; 2004; 38(14-15):3167-78. PubMed ID: 15276732
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Optimization of growth media components for polyhydroxyalkanoate (PHA) production from organic acids by Ralstonia eutropha.
    Yang YH; Brigham CJ; Budde CF; Boccazzi P; Willis LB; Hassan MA; Yusof ZA; Rha C; Sinskey AJ
    Appl Microbiol Biotechnol; 2010 Aug; 87(6):2037-45. PubMed ID: 20535466
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Polyhydroxyalkanoate synthesis by mixed microbial consortia cultured on fermented dairy manure: Effect of aeration on process rates/yields and the associated microbial ecology.
    Coats ER; Watson BS; Brinkman CK
    Water Res; 2016 Dec; 106():26-40. PubMed ID: 27697682
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Combining the enrichment and accumulation step in non-axenic PHA production: Cultivation of Plasticicumulans acidivorans at high volume exchange ratios.
    Marang L; van Loosdrecht MCM; Kleerebezem R
    J Biotechnol; 2016 Aug; 231():260-267. PubMed ID: 27316831
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Addressing the challenge of optimum polyhydroxyalkanoate harvesting: monitoring real time process kinetics and biopolymer accumulation using dielectric spectroscopy.
    Kedia G; Passanha P; Dinsdale RM; Guwy AJ; Lee M; Esteves SR
    Bioresour Technol; 2013 Apr; 134():143-50. PubMed ID: 23500571
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Factorial experimental designs for enhancement of concurrent poly(hydroxyalkanoate) production and brewery wastewater treatment.
    Liu HY; VanderGheynst JS; Darby JL; Thompson DE; Green PG; Loge FJ
    Water Environ Res; 2011 Jan; 83(1):36-43. PubMed ID: 21291026
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Polyhydroxyalkanoates production with mixed microbial cultures: from culture selection to polymer recovery in a high-rate continuous process.
    Villano M; Valentino F; Barbetta A; Martino L; Scandola M; Majone M
    N Biotechnol; 2014 Jun; 31(4):289-96. PubMed ID: 23954657
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Biopolymers production from mixed cultures and pyrolysis by-products.
    Moita R; Lemos PC
    J Biotechnol; 2012 Feb; 157(4):578-83. PubMed ID: 21983233
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Production of polyhydroxyalkanoate (PHA) by Ralstonia eutropha JMP 134 with volatile fatty acids from palm oil mill effluent as precursors.
    Setiadi T; Aznury M; Trianto A; Pancoro A
    Water Sci Technol; 2015; 72(11):1889-95. PubMed ID: 26606081
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Functional stability of a mixed microbial consortium producing PHA from waste carbon sources.
    Coats ER; Loge FJ; Smith WA; Thompson DN; Wolcott MP
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):909-25. PubMed ID: 18478444
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Production of Polyhydroxyalkanoates from Sludge Palm Oil Using
    Kang DK; Lee CR; Lee SH; Bae JH; Park YK; Rhee YH; Sung BH; Sohn JH
    J Microbiol Biotechnol; 2017 May; 27(5):990-994. PubMed ID: 28274100
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Influence of the cycle length on the production of PHA and polyglucose from glycerol by bacterial enrichments in sequencing batch reactors.
    Moralejo-Gárate H; Palmeiro-Sánchez T; Kleerebezem R; Mosquera-Corral A; Campos JL; van Loosdrecht MC
    Biotechnol Bioeng; 2013 Dec; 110(12):3148-55. PubMed ID: 23835920
    [TBL] [Abstract][Full Text] [Related]  

  • 79. High cell density culture of Paracoccus sp. LL1 in membrane bioreactor for enhanced co-production of polyhydroxyalkanoates and astaxanthin.
    Khomlaem C; Aloui H; Oh WG; Kim BS
    Int J Biol Macromol; 2021 Dec; 192():289-297. PubMed ID: 34619282
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Biohydrogen production from Tequila vinasses in an anaerobic sequencing batch reactor: effect of initial substrate concentration, temperature and hydraulic retention time.
    Buitrón G; Carvajal C
    Bioresour Technol; 2010 Dec; 101(23):9071-7. PubMed ID: 20655747
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.