These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 22784615)
1. Statistical methods on detecting differentially expressed genes for RNA-seq data. Chen Z; Liu J; Ng HK; Nadarajah S; Kaufman HL; Yang JY; Deng Y BMC Syst Biol; 2011; 5 Suppl 3(Suppl 3):S1. PubMed ID: 22784615 [TBL] [Abstract][Full Text] [Related]
2. A flexible count data model to fit the wide diversity of expression profiles arising from extensively replicated RNA-seq experiments. Esnaola M; Puig P; Gonzalez D; Castelo R; Gonzalez JR BMC Bioinformatics; 2013 Aug; 14():254. PubMed ID: 23965047 [TBL] [Abstract][Full Text] [Related]
3. Differential expression analysis of RNA sequencing data by incorporating non-exonic mapped reads. Chen HI; Liu Y; Zou Y; Lai Z; Sarkar D; Huang Y; Chen Y BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S14. PubMed ID: 26099631 [TBL] [Abstract][Full Text] [Related]
4. A comparison of statistical methods for detecting differentially expressed genes from RNA-seq data. Kvam VM; Liu P; Si Y Am J Bot; 2012 Feb; 99(2):248-56. PubMed ID: 22268221 [TBL] [Abstract][Full Text] [Related]
5. A Poisson Log-Normal Model for Constructing Gene Covariation Network Using RNA-seq Data. Choi Y; Coram M; Peng J; Tang H J Comput Biol; 2017 Jul; 24(7):721-731. PubMed ID: 28557607 [TBL] [Abstract][Full Text] [Related]
6. rSeqDiff: detecting differential isoform expression from RNA-Seq data using hierarchical likelihood ratio test. Shi Y; Jiang H PLoS One; 2013; 8(11):e79448. PubMed ID: 24260225 [TBL] [Abstract][Full Text] [Related]
7. LFCseq: a nonparametric approach for differential expression analysis of RNA-seq data. Lin B; Zhang LF; Chen X BMC Genomics; 2014; 15 Suppl 10(Suppl 10):S7. PubMed ID: 25560842 [TBL] [Abstract][Full Text] [Related]
8. PLNseq: a multivariate Poisson lognormal distribution for high-throughput matched RNA-sequencing read count data. Zhang H; Xu J; Jiang N; Hu X; Luo Z Stat Med; 2015 Apr; 34(9):1577-89. PubMed ID: 25641202 [TBL] [Abstract][Full Text] [Related]
9. BALLI: Bartlett-adjusted likelihood-based linear model approach for identifying differentially expressed genes with RNA-seq data. Park K; An J; Gim J; Seo M; Lee W; Park T; Won S BMC Genomics; 2019 Jul; 20(1):540. PubMed ID: 31266443 [TBL] [Abstract][Full Text] [Related]
10. Choice of library size normalization and statistical methods for differential gene expression analysis in balanced two-group comparisons for RNA-seq studies. Li X; Cooper NGF; O'Toole TE; Rouchka EC BMC Genomics; 2020 Jan; 21(1):75. PubMed ID: 31992223 [TBL] [Abstract][Full Text] [Related]
11. An optimal test with maximum average power while controlling FDR with application to RNA-seq data. Si Y; Liu P Biometrics; 2013 Sep; 69(3):594-605. PubMed ID: 23889143 [TBL] [Abstract][Full Text] [Related]
12. A bi-Poisson model for clustering gene expression profiles by RNA-seq. Wang N; Wang Y; Hao H; Wang L; Wang Z; Wang J; Wu R Brief Bioinform; 2014 Jul; 15(4):534-41. PubMed ID: 23665510 [TBL] [Abstract][Full Text] [Related]
14. A two-parameter generalized Poisson model to improve the analysis of RNA-seq data. Srivastava S; Chen L Nucleic Acids Res; 2010 Sep; 38(17):e170. PubMed ID: 20671027 [TBL] [Abstract][Full Text] [Related]
15. Statistical inferences for isoform expression in RNA-Seq. Jiang H; Wong WH Bioinformatics; 2009 Apr; 25(8):1026-32. PubMed ID: 19244387 [TBL] [Abstract][Full Text] [Related]
16. Sample size calculation based on exact test for assessing differential expression analysis in RNA-seq data. Li CI; Su PF; Shyr Y BMC Bioinformatics; 2013 Dec; 14():357. PubMed ID: 24314022 [TBL] [Abstract][Full Text] [Related]
17. A multi-Poisson dynamic mixture model to cluster developmental patterns of gene expression by RNA-seq. Ye M; Wang Z; Wang Y; Wu R Brief Bioinform; 2015 Mar; 16(2):205-15. PubMed ID: 24817567 [TBL] [Abstract][Full Text] [Related]
18. EPIG-Seq: extracting patterns and identifying co-expressed genes from RNA-Seq data. Li J; Bushel PR BMC Genomics; 2016 Mar; 17():255. PubMed ID: 27004791 [TBL] [Abstract][Full Text] [Related]
19. Differentially expressed heterogeneous overdispersion genes testing for count data. Yuan Y; Xu Q; Wani A; Dahrendorff J; Wang C; Shen A; Donglasan J; Burgan S; Graham Z; Uddin M; Wildman D; Qu A PLoS One; 2024; 19(7):e0300565. PubMed ID: 39018275 [TBL] [Abstract][Full Text] [Related]
20. A two-step integrated approach to detect differentially expressed genes in RNA-Seq data. Al Mahi N; Begum M J Bioinform Comput Biol; 2016 Dec; 14(6):1650034. PubMed ID: 27774870 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]