These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 22784635)

  • 61. Ambient BTEX and MTBE in the neighborhoods of different industrial parks in Southern Taiwan.
    Hsieh LT; Yang HH; Chen HW
    J Hazard Mater; 2006 Feb; 128(2-3):106-15. PubMed ID: 16300881
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Characterization of the relationship between microbial degradation processes at a hydrocarbon contaminated site using isotopic methods.
    Feisthauer S; Seidel M; Bombach P; Traube S; Knöller K; Wange M; Fachmann S; Richnow HH
    J Contam Hydrol; 2012 May; 133():17-29. PubMed ID: 22484391
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Influence of dissolved organic matter and oil on the biosorption of BTEX by macroalgae in single and multi-solute systems.
    Rodriguez-Hernandez MC; Flores-Chaparro CE; Rangel-Mendez JR
    Environ Sci Pollut Res Int; 2017 Sep; 24(26):20922-20933. PubMed ID: 28721623
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Developing slow-release persulfate candles to treat BTEX contaminated groundwater.
    Kambhu A; Comfort S; Chokejaroenrat C; Sakulthaew C
    Chemosphere; 2012 Oct; 89(6):656-64. PubMed ID: 22776257
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Reduction of diffusive contaminant emissions from a dissolved source in a lower permeability layer by sodium persulfate treatment.
    Cavanagh BA; Johnson PC; Daniels EJ
    Environ Sci Technol; 2014 Dec; 48(24):14582-9. PubMed ID: 25386986
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Characteristics and source implications of aromatic hydrocarbons at urban and background areas in Beijing, China.
    Han T; Ma Z; Xu W; Qiao L; Li Y; He D; Wang Y
    Sci Total Environ; 2020 Mar; 707():136083. PubMed ID: 31863975
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Field-based supercritical fluid extraction of hydrocarbons at industrially contaminated sites.
    Rigou P; Setford SJ; Saini S
    ScientificWorldJournal; 2002 Apr; 2():1063-9. PubMed ID: 12805963
    [TBL] [Abstract][Full Text] [Related]  

  • 68. [Effect of surfactant on the evaporation of BTEX from static water].
    Shen XY; Sun JJ; Ma ZY; Luo XL
    Huan Jing Ke Xue; 2005 Jan; 26(1):122-6. PubMed ID: 15859422
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Laboratory investigation of the migration of hydrocarbons in organobentonite.
    Lo IM; Yang X
    Environ Sci Technol; 2001 Feb; 35(3):620-5. PubMed ID: 11351738
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Metabolical shifts towards alternative BTEX biodegradation intermediates induced by perfluorinated compounds in firefighting foams.
    Montagnolli RN; Lopes PRM; Cruz JM; Claro MT; Quiterio GM; Bidoia ED
    Chemosphere; 2017 Apr; 173():49-60. PubMed ID: 28107715
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Assessing benzene and toluene adsorption with peat depth: Implications on their fate and transport.
    Gharedaghloo B; Price JS
    Environ Pollut; 2021 Apr; 274():116477. PubMed ID: 33549841
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Complex resistivity signatures of ethanol biodegradation in porous media.
    Personna YR; Slater L; Ntarlagiannis D; Werkema D; Szabo Z
    J Contam Hydrol; 2013 Oct; 153():37-50. PubMed ID: 23969406
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Quantifying BTEX in aqueous solutions with potentially interfering hydrocarbons using a partially selective sensor array.
    Cooper JS; Kiiveri H; Hubble LJ; Chow E; Webster MS; Müller KH; Sosa-Pintos A; Bendavid A; Raguse B; Wieczorek L
    Analyst; 2015 May; 140(9):3233-8. PubMed ID: 25768651
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Radon in groundwater contaminated by dissolved hydrocarbons in Santa Bárbara d'Oeste, São Paulo State, Brazil.
    Galhardi JA; Bonotto DM
    Appl Radiat Isot; 2012 Oct; 70(10):2507-15. PubMed ID: 22885393
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Fast identification and quantification of BTEX coupling by Raman spectrometry and chemometrics.
    Moreau J; Rinnert E
    Analyst; 2015 May; 140(10):3535-42. PubMed ID: 25848651
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Delineation of hydrocarbon contaminants with multi-frequency complex conductivity imaging.
    Flores Orozco A; Ciampi P; Katona T; Censini M; Papini MP; Deidda GP; Cassiani G
    Sci Total Environ; 2021 May; 768():144997. PubMed ID: 33736329
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Imaging LNAPL distribution at a former chemical plant with time-domain induced polarization.
    Dong Y; Xia T; Meng J; Mao D
    Sci Rep; 2024 Aug; 14(1):18268. PubMed ID: 39107372
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Combining geophysical prospection and core drilling: Reconstruction of a Late Bronze Age copper mine at Prigglitz-Gasteil in the Eastern Alps (Austria).
    Trebsche P; Schlögel I; Flores-Orozco A
    Archaeol Prospect; 2022; 29(4):557-577. PubMed ID: 37064615
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A Different Processing of Time-Domain Induced Polarisation: Application for Investigating the Marine Intrusion in a Coastal Aquifer in the SE Iberian Peninsula.
    Díaz-Curiel J; Biosca B; Arévalo-Lomas L; Miguel MJ
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679505
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Noninvasive characterization of the Trecate (Italy) crude-oil contaminated site: links between contamination and geophysical signals.
    Cassiani G; Binley A; Kemna A; Wehrer M; Orozco AF; Deiana R; Boaga J; Rossi M; Dietrich P; Werban U; Zschornack L; Godio A; JafarGandomi A; Deidda GP
    Environ Sci Pollut Res Int; 2014; 21(15):8914-31. PubMed ID: 24619658
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.