These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 22784707)

  • 1. Experimental and simulated performance of lithium niobate 1-3 piezocomposites for 2 MHz non-destructive testing applications.
    Kirk KJ; Schmarje N
    Ultrasonics; 2013 Jan; 53(1):185-90. PubMed ID: 22784707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of triangular pillar geometry on high- frequency piezocomposite transducers.
    Yin J; Lee M; Brown J; Cherin E; Foster F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Apr; 57(4):957-68. PubMed ID: 20378458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging with lithium niobate/epoxy composites.
    Schmarje N; Saillant JF; Kirk KJ; Cochran S
    Ultrasonics; 2004 Apr; 42(1-9):439-42. PubMed ID: 15047325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electric field-induced strain behavior in lithium- and copper-added potassium sodium niobate piezoceramics and 1-3 piezocomposites.
    Alkoy EM; Berksoy A; Tekdas AS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Sep; 58(9):1804-10. PubMed ID: 21937311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 1-3 connectivity lithium niobate composites for high temperature operation.
    Schmarje N; Kirk KJ; Cochran S
    Ultrasonics; 2007 Dec; 47(1-4):15-22. PubMed ID: 17662330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of high frequency piezocomposite with hexagonal pillars via cold ablation process.
    Li Z; Lv J; Zhu X; Cui Y; Jian X
    Ultrasonics; 2021 Jul; 114():106404. PubMed ID: 33714767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental analysis of 1-3 piezocomposites for high-intensity focused ultrasound transducer applications.
    Chen GS; Liu HC; Lin YC; Lin YL
    IEEE Trans Biomed Eng; 2013 Jan; 60(1):128-34. PubMed ID: 23193224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of an epoxy filler for piezocomposites compatible with microfabrication processes.
    Bernassau AL; Hutson D; Démoré CE; Cochran S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Dec; 58(12):2743-8. PubMed ID: 23443710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. State-of-the-Art and Practical Guide to Ultrasonic Transducers for Harsh Environments Including Temperatures above 2120 °F (1000 °C) and Neutron Flux above 10
    Tittmann BR; Batista CFG; Trivedi YP; Lissenden Iii CJ; Reinhardt BT
    Sensors (Basel); 2019 Nov; 19(21):. PubMed ID: 31683921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 1-3 connectivity piezoelectric ceramic-polymer composite transducers made with viscous polymer processing for high frequency ultrasound.
    Abrar A; Zhang D; Su B; Button TW; Kirk KJ; Cochran S
    Ultrasonics; 2004 Apr; 42(1-9):479-84. PubMed ID: 15047332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of acoustic waves of higher order propagating in plates of lithium niobate.
    Kuznetsova IE; Zaitsev BD; Borodina IA; Teplyh AA; Shurygin VV; Joshi SG
    Ultrasonics; 2004 Apr; 42(1-9):179-82. PubMed ID: 15047283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Planar coupling to high-Q lithium niobate disk resonators.
    Nunzi Conti G; Berneschi S; Cosi F; Pelli S; Soria S; Righini GC; Dispenza M; Secchi A
    Opt Express; 2011 Feb; 19(4):3651-6. PubMed ID: 21369190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical and experimental investigation of kerf depth effect on high-frequency phased array transducer.
    Zhang JY; Xu WJ; Carlier J; Ji XM; Queste S; Nongaillard B; Huang YP
    Ultrasonics; 2012 Feb; 52(2):223-9. PubMed ID: 21907378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Researching on resonance characteristics influenced by the structure parameters of 1-3-2 piezocomposites plate.
    Li L; Qin L; Wang LK; Wan YY; Sun BS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 May; 55(5):946-51. PubMed ID: 18519193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 1-3 connectivity composite material made from lithium niobate and cement for ultrasonic condition monitoring at elevated temperatures.
    Shepherd G; Cochran A; Kirk KJ; McNab A
    Ultrasonics; 2002 May; 40(1-8):223-6. PubMed ID: 12159936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and performance of high-frequency composite transducers with triangular-pillar geometry.
    Brown JA; Chérin E; Yin J; Foster FS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):827-36. PubMed ID: 19406712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of 40-MHz Ultrasonic Transducers via Soft Mold Process.
    Gunther PA; Neumeister P; Neubert H; Gebhardt S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Sep; 66(9):1497-1503. PubMed ID: 31217102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crosstalk reduction for high-frequency linear-array ultrasound transducers using 1-3 piezocomposites with pseudo-random pillars.
    Yang HC; Cannata J; Williams J; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Oct; 59(10):2312-21. PubMed ID: 23143580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental and finite element modelling studies on single-layer and multi-layer 1-3 piezocomposite transducers.
    Ramesh R; Prasad CD; Kumar TK; Gavane LA; Vishnubhatla RM
    Ultrasonics; 2006 Nov; 44(4):341-9. PubMed ID: 16890265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A New High-Temperature Ultrasonic Transducer for Continuous Inspection.
    Amini MH; Sinclair AN; Coyle TW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Mar; 63(3):448-55. PubMed ID: 26829787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.