BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 227848)

  • 1. Kinetic and mechanistic studies on the reduction of melilotate hydroxylase by reduced pyridine nucleotides.
    Schopfer LM; Massey V
    J Biol Chem; 1979 Nov; 254(21):10634-43. PubMed ID: 227848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic and mechanistic studies on the oxidation of the melilotate hydroxylase . 2-OH-cinnamate complex by molecular oxygen.
    Schopfer LM; Massey V
    J Biol Chem; 1980 Jun; 255(11):5355-63. PubMed ID: 7372639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic and mechanistic studies on the reaction of melilotate hydroxylase with deuterated melilotate.
    Strickland S; Schopfer LM; Massey V
    Biochemistry; 1975 May; 14(10):2230-5. PubMed ID: 1148167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactions of 1-deaza-FAD-substituted phenol hydroxylase and melilotate hydroxylase.
    Detmer K; Schopfer LM; Massey V
    J Biol Chem; 1984 Feb; 259(3):1532-8. PubMed ID: 6693423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the kinetic mechanism of enterococcal NADH peroxidase reveals catalytic roles for NADH complexes with both oxidized and two-electron-reduced enzyme forms.
    Crane EJ; Parsonage D; Poole LB; Claiborne A
    Biochemistry; 1995 Oct; 34(43):14114-24. PubMed ID: 7578008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The kinetic mechanism of salicylate hydroxylase as studied by initial rate measurement, rapid reaction kinetics, and isotope effects.
    Wang LH; Tu SC
    J Biol Chem; 1984 Sep; 259(17):10682-8. PubMed ID: 6381488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic studies on the reaction of p-hydroxybenzoate hydroxylase. Agreement of steady state and rapid reaction data.
    Husain M; Massey V
    J Biol Chem; 1979 Jul; 254(14):6657-66. PubMed ID: 36402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic mechanism of 2-hydroxybiphenyl 3-monooxygenase, a flavoprotein from Pseudomonas azelaica HBP1.
    Suske WA; van Berkel WJ; Kohler HP
    J Biol Chem; 1999 Nov; 274(47):33355-65. PubMed ID: 10559214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Equilibrium and transient state spectrophotometric studies of the mechanism of reduction of the flavoprotein domain of P450BM-3.
    Sevrioukova I; Shaffer C; Ballou DP; Peterson JA
    Biochemistry; 1996 Jun; 35(22):7058-68. PubMed ID: 8679531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain.
    Murataliev MB; Klein M; Fulco A; Feyereisen R
    Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reaction of phthalate dioxygenase reductase with NADH and NAD: kinetic and spectral characterization of intermediates.
    Gassner G; Wang L; Batie C; Ballou DP
    Biochemistry; 1994 Oct; 33(40):12184-93. PubMed ID: 7522555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron transfer in human methionine synthase reductase studied by stopped-flow spectrophotometry.
    Wolthers KR; Scrutton NS
    Biochemistry; 2004 Jan; 43(2):490-500. PubMed ID: 14717604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The lipoamide dehydrogenase from Mycobacterium tuberculosis permits the direct observation of flavin intermediates in catalysis.
    Argyrou A; Blanchard JS; Palfey BA
    Biochemistry; 2002 Dec; 41(49):14580-90. PubMed ID: 12463758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences between the reactivities of two pyridine nucleotides in the rapid reduction process and the reoxidation process of adrenodoxin reductase.
    Sugiyama T; Miura R; Yamano T
    J Biochem; 1979 Jul; 86(1):213-23. PubMed ID: 39065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic and mechanistic studies on the reactions of 2-aminobenzoyl-CoA monooxygenase/reductase.
    Langkau B; Ghisla S
    Eur J Biochem; 1995 Jun; 230(2):686-97. PubMed ID: 7607243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase.
    Su Q; Klinman JP
    Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Association and redox properties of the putidaredoxin reductase-nicotinamide adenine dinucleotide complex.
    Reipa V; Holden MJ; Vilker VL
    Biochemistry; 2007 Nov; 46(45):13235-44. PubMed ID: 17941648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of monovalent anions on the mechanism of phenol hydroxylase.
    Detmer K; Massey V
    J Biol Chem; 1984 Sep; 259(18):11265-72. PubMed ID: 6470002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and characterization of a truncated form of phthalate dioxygenase reductase that lacks an iron-sulfur domain.
    Gassner GT; Ballou DP
    Biochemistry; 1995 Oct; 34(41):13460-71. PubMed ID: 7577934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protonation mechanism and location of rate-determining steps for the Ascaris suum nicotinamide adenine dinucleotide-malic enzyme reaction from isotope effects and pH studies.
    Kiick DM; Harris BG; Cook PF
    Biochemistry; 1986 Jan; 25(1):227-36. PubMed ID: 3513825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.