These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 22784807)

  • 1. The modified SWAT model for predicting fecal coliforms in the Wachusett Reservoir Watershed, USA.
    Cho KH; Pachepsky YA; Kim JH; Kim JW; Park MH
    Water Res; 2012 Oct; 46(15):4750-60. PubMed ID: 22784807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Source specific fecal bacteria modeling using soil and water assessment tool model.
    Parajuli PB; Mankin KR; Barnes PL
    Bioresour Technol; 2009 Jan; 100(2):953-63. PubMed ID: 18703332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting fecal coliform using the interval-to-interval approach and SWAT in the Miyun watershed, China.
    Bai J; Shen Z; Yan T; Qiu J; Li Y
    Environ Sci Pollut Res Int; 2017 Jun; 24(18):15462-15470. PubMed ID: 28512705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing fecal coliform fate and transport in a coastal watershed using HSPF.
    Rolle K; Gitau MW; Chen G; Chauhan A
    Water Sci Technol; 2012; 66(5):1096-102. PubMed ID: 22797240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using SWAT, Bacteroidales microbial source tracking markers, and fecal indicator bacteria to predict waterborne pathogen occurrence in an agricultural watershed.
    Frey SK; Topp E; Edge T; Fall C; Gannon V; Jokinen C; Marti R; Neumann N; Ruecker N; Wilkes G; Lapen DR
    Water Res; 2013 Oct; 47(16):6326-37. PubMed ID: 24079968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional modeling of fecal coliform in the Tidal Basin and Washington Channel, Washington, DC.
    Bai S; Lung WS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(7):1327-46. PubMed ID: 16854806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fecal bacteria in the rivers of the Seine drainage network (France): sources, fate and modelling.
    Servais P; Garcia-Armisen T; George I; Billen G
    Sci Total Environ; 2007 Apr; 375(1-3):152-67. PubMed ID: 17239424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the dry-weather tidal cycling of fecal indicator bacteria in surface waters of an intertidal wetland.
    Sanders BF; Arega F; Sutula M
    Water Res; 2005 Sep; 39(14):3394-408. PubMed ID: 16051310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling spatiotemporal bacterial variability with meteorological and watershed land-use characteristics.
    Cha Y; Park MH; Lee SH; Kim JH; Cho KH
    Water Res; 2016 Sep; 100():306-315. PubMed ID: 27208919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathogen transport and fate modeling in the Upper Salem River Watershed using SWAT model.
    Niazi M; Obropta C; Miskewitz R
    J Environ Manage; 2015 Mar; 151():167-77. PubMed ID: 25576694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Models of total and presumed wildlife sources of fecal coliform bacteria in coastal ponds.
    Siewicki TC; Pullaro T; Pan W; McDaniel S; Glenn R; Stewart J
    J Environ Manage; 2007 Jan; 82(1):120-32. PubMed ID: 16556478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrologic and atrazine simulation of the Cedar Creek Watershed using the SWAT model.
    Larose M; Heathman GC; Norton LD; Engel B
    J Environ Qual; 2007; 36(2):521-31. PubMed ID: 17332256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating the influence of climate change on the fate and transport of fecal coliform bacteria using the modified SWAT model.
    Jeon DJ; Ligaray M; Kim M; Kim G; Lee G; Pachepsky YA; Cha DH; Cho KH
    Sci Total Environ; 2019 Mar; 658():753-762. PubMed ID: 30583170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the soil and water assessment tool (SWAT) for simulating E. coli concentrations at the watershed-scale.
    Sowah RA; Bradshaw K; Snyder B; Spidle D; Molina M
    Sci Total Environ; 2020 Dec; 746():140669. PubMed ID: 32763592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatially explicit pollutant load-integrated in-stream E. coli concentration modeling in a mixed land-use catchment.
    Thilakarathne M; Sridhar V; Karthikeyan R
    Water Res; 2018 Nov; 144():87-103. PubMed ID: 30014982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of fecal coliform inputs to aquatic systems through soil leaching.
    George I; Anzil A; Servais P
    Water Res; 2004 Feb; 38(3):611-8. PubMed ID: 14723930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Verifying the applicability of SWAT to simulate fecal contamination for watershed management of Selangor River, Malaysia.
    Kondo T; Sakai N; Yazawa T; Shimizu Y
    Sci Total Environ; 2021 Jun; 774():145075. PubMed ID: 33609845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mechanistic model of runoff-associated fecal coliform fate and transport through a coastal lagoon.
    Steets BM; Holden PA
    Water Res; 2003 Feb; 37(3):589-608. PubMed ID: 12688694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial and temporal variability of fecal indicator bacteria in an urban stream under different meteorological regimes.
    Cha SM; Lee SW; Park YE; Cho KH; Lee S; Kim JH
    Water Sci Technol; 2010; 61(12):3102-8. PubMed ID: 20555206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Persistence of fecal indicator bacteria in Santa Monica Bay beach sediments.
    Lee CM; Lin TY; Lin CC; Kohbodi GA; Bhatt A; Lee R; Jay JA
    Water Res; 2006 Aug; 40(14):2593-602. PubMed ID: 16793111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.