These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 22784864)

  • 1. Using slow-release permanganate candles to remove TCE from a low permeable aquifer at a former landfill.
    Christenson MD; Kambhu A; Comfort SD
    Chemosphere; 2012 Oct; 89(6):680-7. PubMed ID: 22784864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A five-year performance review of field-scale, slow-release permanganate candles with recommendations for second-generation improvements.
    Christenson M; Kambhu A; Reece J; Comfort S; Brunner L
    Chemosphere; 2016 May; 150():239-247. PubMed ID: 26901481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of KMnO(4)-releasing composites for in situ chemical oxidation of TCE-contaminated groundwater.
    Liang SH; Chen KF; Wu CS; Lin YH; Kao CM
    Water Res; 2014 May; 54():149-58. PubMed ID: 24568784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficacy of controlled-release KMnO4 (CRP) for controlling dissolved TCE plume in groundwater: a large flow-tank study.
    Lee BS; Kim JH; Lee KC; Kim YB; Schwartz FW; Lee ES; Woo NC; Lee MK
    Chemosphere; 2009 Feb; 74(6):745-50. PubMed ID: 19118857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation of volatile organic vapours in air by solid potassium permanganate.
    Mahmoodlu MG; Hartog N; Majid Hassanizadeh S; Raoof A
    Chemosphere; 2013 Jun; 91(11):1534-8. PubMed ID: 23357868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of potassium permanganate as an oxidant for in situ oxidation of trichloroethylene-contaminated groundwater: a laboratory and kinetics study.
    Kao CM; Huang KD; Wang JY; Chen TY; Chien HY
    J Hazard Mater; 2008 May; 153(3):919-27. PubMed ID: 18006224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling improved ISCO treatment of low permeable zones via viscosity modification: assessment of system variables.
    Kananizadeh N; Chokejaroenrat C; Li Y; Comfort S
    J Contam Hydrol; 2015 Feb; 173():25-37. PubMed ID: 25528134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plume persistence caused by back diffusion from thin clay layers in a sand aquifer following TCE source-zone hydraulic isolation.
    Parker BL; Chapman SW; Guilbeault MA
    J Contam Hydrol; 2008 Nov; 102(1-2):86-104. PubMed ID: 18775583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of permanganate oxidation of TCE at low reagent concentrations.
    Woo NC; Hyun SG; Park WW; Lee ES; Schwartz FW
    Environ Technol; 2009 Dec; 30(13):1337-42. PubMed ID: 20088197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remediation of TCE-contaminated groundwater using KMnO
    Yang ZH; Ou JH; Dong CD; Chen CW; Lin WH; Kao CM
    Environ Sci Pollut Res Int; 2019 Nov; 26(33):34027-34038. PubMed ID: 30232775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation of trichloroethylene, toluene, and ethanol vapors by a partially saturated permeable reactive barrier.
    Mahmoodlu MG; Hassanizadeh SM; Hartog N; Raoof A
    J Contam Hydrol; 2014 Aug; 164():193-208. PubMed ID: 24992709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The legacy of chlorinated solvents in the Birmingham aquifer, UK: observations spanning three decades and the challenge of future urban groundwater development.
    Rivett MO; Turner RJ; Glibbery Née Murcott P; Cuthbert MO
    J Contam Hydrol; 2012 Oct; 140-141():107-23. PubMed ID: 23022878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developing slow-release persulfate candles to treat BTEX contaminated groundwater.
    Kambhu A; Comfort S; Chokejaroenrat C; Sakulthaew C
    Chemosphere; 2012 Oct; 89(6):656-64. PubMed ID: 22776257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Movement of trichloroethene in a discontinuous permafrost zone.
    Carlson AE; Barnes DL
    J Contam Hydrol; 2011 Jun; 124(1-4):1-13. PubMed ID: 21382645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Field study of TCE diffusion profiles below DNAPL to assess aquitard integrity.
    Parker BL; Cherry JA; Chapman SW
    J Contam Hydrol; 2004 Oct; 74(1-4):197-230. PubMed ID: 15358493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of sources of bulk conductivity change in saturated silica sand after unbuffered TCE oxidation by permanganate.
    Hort RD; Revil A; Munakata-Marr J
    J Contam Hydrol; 2014 Sep; 165():11-23. PubMed ID: 25064184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laboratory-scale column study for remediation of TCE-contaminated aquifers using three-section controlled-release potassium permanganate barriers.
    Yuan B; Li F; Chen Y; Fu ML
    J Environ Sci (China); 2013 May; 25(5):971-7. PubMed ID: 24218827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Injectable silica-permanganate gel as a slow-release MnO4(-) source for groundwater remediation: rheological properties and release dynamics.
    Yang S; Oostrom M; Truex MJ; Li G; Zhong L
    Environ Sci Process Impacts; 2016 Feb; 18(2):256-64. PubMed ID: 26766607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unintentional contaminant transfer from groundwater to the vadose zone during source zone remediation of volatile organic compounds.
    Chong AD; Mayer KU
    J Contam Hydrol; 2017 Sep; 204():1-10. PubMed ID: 28830695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of injection system design on ISCO performance with permanganate--mathematical modeling results.
    Cha KY; Borden RC
    J Contam Hydrol; 2012 Feb; 128(1-4):33-46. PubMed ID: 22192343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.