These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 22784956)

  • 1. Optimizing feeding composition and carbon-nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw.
    Wang X; Yang G; Feng Y; Ren G; Han X
    Bioresour Technol; 2012 Sep; 120():78-83. PubMed ID: 22784956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Response surface optimization of methane potentials in anaerobic co-digestion of multiple substrates: dairy, chicken manure and wheat straw.
    Wang X; Yang G; Li F; Feng Y; Ren G
    Waste Manag Res; 2013 Jan; 31(1):60-6. PubMed ID: 23188713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biogas production from co-digestion of corn stover and chicken manure under anaerobic wet, hemi-solid, and solid state conditions.
    Li Y; Zhang R; Chen C; Liu G; He Y; Liu X
    Bioresour Technol; 2013 Dec; 149():406-12. PubMed ID: 24135565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of anaerobic co-digestion of dairy manure with food wastes via bio-methane potential assay and CSTR reactor.
    Ye Y; Zamalloa C; Lin H; Yan M; Schmidt D; Hu B
    J Environ Sci Health B; 2015; 50(3):217-27. PubMed ID: 25602155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methane enhancement through co-digestion of chicken manure and thermo-oxidative cleaved wheat straw with waste activated sludge: A C/N optimization case.
    Hassan M; Ding W; Shi Z; Zhao S
    Bioresour Technol; 2016 Jul; 211():534-41. PubMed ID: 27038262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semi-continuous anaerobic co-digestion of dairy manure with three crop residues for biogas production.
    Li J; Wei L; Duan Q; Hu G; Zhang G
    Bioresour Technol; 2014 Mar; 156():307-13. PubMed ID: 24525215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Batch and semi-continuous anaerobic co-digestion of goose manure with alkali solubilized wheat straw: A case of carbon to nitrogen ratio and organic loading rate regression optimization.
    Hassan M; Ding W; Umar M; Rasool G
    Bioresour Technol; 2017 Apr; 230():24-32. PubMed ID: 28147301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced methane production from pig manure anaerobic digestion using fish and biodiesel wastes as co-substrates.
    Regueiro L; Carballa M; Alvarez JA; Lema JM
    Bioresour Technol; 2012 Nov; 123():507-13. PubMed ID: 22940361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anaerobic digestion of municipal solid waste and agricultural waste and the effect of co-digestion with dairy cow manure.
    Macias-Corral M; Samani Z; Hanson A; Smith G; Funk P; Yu H; Longworth J
    Bioresour Technol; 2008 Nov; 99(17):8288-93. PubMed ID: 18482835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of methane production from co-digestion of chicken manure with agricultural wastes.
    Abouelenien F; Namba Y; Kosseva MR; Nishio N; Nakashimada Y
    Bioresour Technol; 2014 May; 159():80-7. PubMed ID: 24632629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel alternate feeding mode for semi-continuous anaerobic co-digestion of food waste with chicken manure.
    Wang M; Sun X; Li P; Yin L; Liu D; Zhang Y; Li W; Zheng G
    Bioresour Technol; 2014 Jul; 164():309-14. PubMed ID: 24865323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anaerobic co-digestion of chicken manure and corn stover in batch and continuously stirred tank reactor (CSTR).
    Li Y; Zhang R; He Y; Zhang C; Liu X; Chen C; Liu G
    Bioresour Technol; 2014 Mar; 156():342-7. PubMed ID: 24531118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biogas production from wheat straw and manure--impact of pretreatment and process operating parameters.
    Risberg K; Sun L; Levén L; Horn SJ; Schnürer A
    Bioresour Technol; 2013 Dec; 149():232-7. PubMed ID: 24121239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of corn stover particle size and C/N ratio on reactor performance in solid-state anaerobic co-digestion with dairy manure.
    Ajayi-Banji AA; Rahman S; Sunoj S; Igathinathane C
    J Air Waste Manag Assoc; 2020 Apr; 70(4):436-454. PubMed ID: 32049604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biogas production from co-digestion of dairy manure and food waste.
    El-Mashad HM; Zhang R
    Bioresour Technol; 2010 Jun; 101(11):4021-8. PubMed ID: 20137909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anaerobic co-digestion of poultry litter and wheat straw affected by solids composition, free ammonia and carbon/nitrogen ratio.
    Zhu J; Wu S; Shen J
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(3):231-237. PubMed ID: 30590986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison on batch anaerobic digestion of five different livestock manures and prediction of biochemical methane potential (BMP) using different statistical models.
    Kafle GK; Chen L
    Waste Manag; 2016 Feb; 48():492-502. PubMed ID: 26531046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing feed composition for improved methane yield during anaerobic digestion of cow manure based waste mixtures.
    Ashekuzzaman SM; Poulsen TG
    Bioresour Technol; 2011 Feb; 102(3):2213-8. PubMed ID: 20974531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of temperature and carbon-nitrogen (C/N) ratio on the performance of anaerobic co-digestion of dairy manure, chicken manure and rice straw: focusing on ammonia inhibition.
    Wang X; Lu X; Li F; Yang G
    PLoS One; 2014; 9(5):e97265. PubMed ID: 24817003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semi-solid state promotes the methane production during anaerobic co-digestion of chicken manure with corn straw comparison to wet and high-solid state.
    Guo HG; Li Q; Wang LL; Chen QL; Hu HW; Cheng DJ; He JZ
    J Environ Manage; 2022 Aug; 316():115264. PubMed ID: 35569359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.