BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 22785374)

  • 1. Cyclic GMP-dependent signaling in cardiac myocytes.
    Takimoto E
    Circ J; 2012; 76(8):1819-25. PubMed ID: 22785374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feedback control through cGMP-dependent protein kinase contributes to differential regulation and compartmentation of cGMP in rat cardiac myocytes.
    Castro LR; Schittl J; Fischmeister R
    Circ Res; 2010 Nov; 107(10):1232-40. PubMed ID: 20847310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Individual cerebellar Purkinje cells express different cGMP phosphodiesterases (PDEs): in vivo phosphorylation of cGMP-specific PDE (PDE5) as an indicator of cGMP-dependent protein kinase (PKG) activation.
    Shimizu-Albergine M; Rybalkin SD; Rybalkina IG; Feil R; Wolfsgruber W; Hofmann F; Beavo JA
    J Neurosci; 2003 Jul; 23(16):6452-9. PubMed ID: 12878685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. cGMP catabolism by phosphodiesterase 5A regulates cardiac adrenergic stimulation by NOS3-dependent mechanism.
    Takimoto E; Champion HC; Belardi D; Moslehi J; Mongillo M; Mergia E; Montrose DC; Isoda T; Aufiero K; Zaccolo M; Dostmann WR; Smith CJ; Kass DA
    Circ Res; 2005 Jan; 96(1):100-9. PubMed ID: 15576651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Turning on cGMP-dependent pathways to treat cardiac dysfunctions: boom, bust, and beyond.
    Lukowski R; Krieg T; Rybalkin SD; Beavo J; Hofmann F
    Trends Pharmacol Sci; 2014 Aug; 35(8):404-13. PubMed ID: 24948380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclic GMP and cGMP-binding phosphodiesterase are required for interleukin-1-induced nitric oxide synthesis in human articular chondrocytes.
    Geng Y; Zhou L; Thompson WJ; Lotz M
    J Biol Chem; 1998 Oct; 273(42):27484-91. PubMed ID: 9765278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of phosphodiesterases in the regulation of the cardiac cyclic nucleotide cross-talk signaling network.
    Zhao CY; Greenstein JL; Winslow RL
    J Mol Cell Cardiol; 2016 Feb; 91():215-27. PubMed ID: 26773602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclic guanosine monophosphate compartmentation in rat cardiac myocytes.
    Castro LR; Verde I; Cooper DM; Fischmeister R
    Circulation; 2006 May; 113(18):2221-8. PubMed ID: 16651469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphodiesterase 5 restricts NOS3/Soluble guanylate cyclase signaling to L-type Ca2+ current in cardiac myocytes.
    Wang H; Kohr MJ; Traynham CJ; Ziolo MT
    J Mol Cell Cardiol; 2009 Aug; 47(2):304-14. PubMed ID: 19345227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide synthase and cyclic GMP signaling in cardiac myocytes: from contractility to remodeling.
    Hammond J; Balligand JL
    J Mol Cell Cardiol; 2012 Feb; 52(2):330-40. PubMed ID: 21843527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo reconstitution of the negative feedback in nitric oxide/cGMP signaling: role of phosphodiesterase type 5 phosphorylation.
    Mullershausen F; Russwurm M; Koesling D; Friebe A
    Mol Biol Cell; 2004 Sep; 15(9):4023-30. PubMed ID: 15240816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The NO/cGMP/PKG pathway in platelets: The therapeutic potential of PDE5 inhibitors in platelet disorders.
    Degjoni A; Campolo F; Stefanini L; Venneri MA
    J Thromb Haemost; 2022 Nov; 20(11):2465-2474. PubMed ID: 35950928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cardiac role of cyclic-GMP hydrolyzing phosphodiesterase type 5: from experimental models to clinical trials.
    Kass DA
    Curr Heart Fail Rep; 2012 Sep; 9(3):192-9. PubMed ID: 22798047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclic GMP metabolism and its role in brain physiology.
    Domek-Łopacińska K; Strosznajder JB
    J Physiol Pharmacol; 2005 Mar; 56 Suppl 2():15-34. PubMed ID: 16077188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of type 5 phosphodiesterase counteracts β2-adrenergic signalling in beating cardiomyocytes.
    Isidori AM; Cornacchione M; Barbagallo F; Di Grazia A; Barrios F; Fassina L; Monaco L; Giannetta E; Gianfrilli D; Garofalo S; Zhang X; Chen X; Xiang YK; Lenzi A; Pellegrini M; Naro F
    Cardiovasc Res; 2015 Jun; 106(3):408-20. PubMed ID: 25852085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PDE5A suppression of acute beta-adrenergic activation requires modulation of myocyte beta-3 signaling coupled to PKG-mediated troponin I phosphorylation.
    Lee DI; Vahebi S; Tocchetti CG; Barouch LA; Solaro RJ; Takimoto E; Kass DA
    Basic Res Cardiol; 2010 May; 105(3):337-47. PubMed ID: 20107996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Angiotensin II increases phosphodiesterase 5A expression in vascular smooth muscle cells: a mechanism by which angiotensin II antagonizes cGMP signaling.
    Kim D; Aizawa T; Wei H; Pi X; Rybalkin SD; Berk BC; Yan C
    J Mol Cell Cardiol; 2005 Jan; 38(1):175-84. PubMed ID: 15623434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Marked disparity of microRNA modulation by cGMP-selective PDE5 versus PDE9 inhibitors in heart disease.
    Kokkonen-Simon KM; Saberi A; Nakamura T; Ranek MJ; Zhu G; Bedja D; Kuhn M; Halushka MK; Lee DI; Kass DA
    JCI Insight; 2018 Aug; 3(15):. PubMed ID: 30089721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Species- and tissue-dependent effects of NO and cyclic GMP on cardiac ion channels.
    Fischmeister R; Castro L; Abi-Gerges A; Rochais F; Vandecasteele G
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Oct; 142(2):136-43. PubMed ID: 15927494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compartmentalization of cardiac beta-adrenergic inotropy modulation by phosphodiesterase type 5.
    Takimoto E; Belardi D; Tocchetti CG; Vahebi S; Cormaci G; Ketner EA; Moens AL; Champion HC; Kass DA
    Circulation; 2007 Apr; 115(16):2159-67. PubMed ID: 17420342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.