These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 22785430)

  • 1. Dual-mode sulfur-based cathode materials for rechargeable Li-S batteries.
    Yin L; Wang J; Yu X; Monroe CW; NuLi Y; Yang J
    Chem Commun (Camb); 2012 Aug; 48(63):7868-70. PubMed ID: 22785430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchical sulfur-based cathode materials with long cycle life for rechargeable lithium batteries.
    Wang J; Yin L; Jia H; Yu H; He Y; Yang J; Monroe CW
    ChemSusChem; 2014 Feb; 7(2):563-9. PubMed ID: 24155121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prospect of Sulfurized Pyrolyzed Poly(acrylonitrile) (S@pPAN) Cathode Materials for Rechargeable Lithium Batteries.
    Yang H; Chen J; Yang J; Wang J
    Angew Chem Int Ed Engl; 2020 May; 59(19):7306-7318. PubMed ID: 31713966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High Molecular Weight Polyacrylonitrile Precursor for S@pPAN Composite Cathode Materials with High Specific Capacity for Rechargeable Lithium Batteries.
    Lei J; Chen J; Zhang H; Naveed A; Yang J; Nuli Y; Wang J
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):33702-33709. PubMed ID: 32633481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfur-based composite cathode materials for high-energy rechargeable lithium batteries.
    Wang J; He YS; Yang J
    Adv Mater; 2015 Jan; 27(3):569-75. PubMed ID: 25256595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of lithium storage in MoS2 and the feasibility of using Li2S/Mo nanocomposites as cathode materials for lithium-sulfur batteries.
    Fang X; Guo X; Mao Y; Hua C; Shen L; Hu Y; Wang Z; Wu F; Chen L
    Chem Asian J; 2012 May; 7(5):1013-7. PubMed ID: 22374889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A pyrolyzed polyacrylonitrile/selenium disulfide composite cathode with remarkable lithium and sodium storage performances.
    Li Z; Zhang J; Lu Y; Lou XWD
    Sci Adv; 2018 Jun; 4(6):eaat1687. PubMed ID: 29888331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lithium-sulfur batteries: electrochemistry, materials, and prospects.
    Yin YX; Xin S; Guo YG; Wan LJ
    Angew Chem Int Ed Engl; 2013 Dec; 52(50):13186-200. PubMed ID: 24243546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries.
    Cao Y; Li X; Aksay IA; Lemmon J; Nie Z; Yang Z; Liu J
    Phys Chem Chem Phys; 2011 May; 13(17):7660-5. PubMed ID: 21448499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new class of lithium and sodium rechargeable batteries based on selenium and selenium-sulfur as a positive electrode.
    Abouimrane A; Dambournet D; Chapman KW; Chupas PJ; Weng W; Amine K
    J Am Chem Soc; 2012 Mar; 134(10):4505-8. PubMed ID: 22364225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The First Introduction of Graphene to Rechargeable Li-CO2 Batteries.
    Zhang Z; Zhang Q; Chen Y; Bao J; Zhou X; Xie Z; Wei J; Zhou Z
    Angew Chem Int Ed Engl; 2015 May; 54(22):6550-3. PubMed ID: 25968053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cathode composites for Li-S batteries via the use of oxygenated porous architectures.
    Demir-Cakan R; Morcrette M; Nouar F; Davoisne C; Devic T; Gonbeau D; Dominko R; Serre C; Férey G; Tarascon JM
    J Am Chem Soc; 2011 Oct; 133(40):16154-60. PubMed ID: 21882857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries.
    Nelson J; Misra S; Yang Y; Jackson A; Liu Y; Wang H; Dai H; Andrews JC; Cui Y; Toney MF
    J Am Chem Soc; 2012 Apr; 134(14):6337-43. PubMed ID: 22432568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TPPi as a flame retardant for rechargeable lithium batteries with sulfur composite cathodes.
    Jia H; Wang J; Lin F; Monroe CW; Yang J; NuLi Y
    Chem Commun (Camb); 2014 Jul; 50(53):7011-3. PubMed ID: 24846751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries.
    Zhu X; Zhu Y; Murali S; Stoller MD; Ruoff RS
    ACS Nano; 2011 Apr; 5(4):3333-8. PubMed ID: 21443243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ReaxFF molecular dynamics simulations on lithiated sulfur cathode materials.
    Islam MM; Ostadhossein A; Borodin O; Yeates AT; Tipton WW; Hennig RG; Kumar N; van Duin AC
    Phys Chem Chem Phys; 2015 Feb; 17(5):3383-93. PubMed ID: 25529209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel cathode material for rechargeable lithium-sulfur batteries.
    Gronwald O; Garsuch A; Panchenko A
    Chimia (Aarau); 2013; 67(10):719-23. PubMed ID: 24388137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene-enveloped sulfur in a one pot reaction: a cathode with good coulombic efficiency and high practical sulfur content.
    Evers S; Nazar LF
    Chem Commun (Camb); 2012 Jan; 48(9):1233-5. PubMed ID: 22179052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SiO2-coated sulfur particles with mildly reduced graphene oxide as a cathode material for lithium-sulfur batteries.
    Campbell B; Bell J; Bay HH; Favors Z; Ionescu R; Ozkan CS; Ozkan M
    Nanoscale; 2015 Apr; 7(16):7051-5. PubMed ID: 25712745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A high-density graphene-sulfur assembly: a promising cathode for compact Li-S batteries.
    Zhang C; Liu DH; Lv W; Wang DW; Wei W; Zhou GM; Wang S; Li F; Li BH; Kang F; Yang QH
    Nanoscale; 2015 Mar; 7(13):5592-7. PubMed ID: 25626595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.