BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 22785430)

  • 1. Dual-mode sulfur-based cathode materials for rechargeable Li-S batteries.
    Yin L; Wang J; Yu X; Monroe CW; NuLi Y; Yang J
    Chem Commun (Camb); 2012 Aug; 48(63):7868-70. PubMed ID: 22785430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchical sulfur-based cathode materials with long cycle life for rechargeable lithium batteries.
    Wang J; Yin L; Jia H; Yu H; He Y; Yang J; Monroe CW
    ChemSusChem; 2014 Feb; 7(2):563-9. PubMed ID: 24155121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prospect of Sulfurized Pyrolyzed Poly(acrylonitrile) (S@pPAN) Cathode Materials for Rechargeable Lithium Batteries.
    Yang H; Chen J; Yang J; Wang J
    Angew Chem Int Ed Engl; 2020 May; 59(19):7306-7318. PubMed ID: 31713966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High Molecular Weight Polyacrylonitrile Precursor for S@pPAN Composite Cathode Materials with High Specific Capacity for Rechargeable Lithium Batteries.
    Lei J; Chen J; Zhang H; Naveed A; Yang J; Nuli Y; Wang J
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):33702-33709. PubMed ID: 32633481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfur-based composite cathode materials for high-energy rechargeable lithium batteries.
    Wang J; He YS; Yang J
    Adv Mater; 2015 Jan; 27(3):569-75. PubMed ID: 25256595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of lithium storage in MoS2 and the feasibility of using Li2S/Mo nanocomposites as cathode materials for lithium-sulfur batteries.
    Fang X; Guo X; Mao Y; Hua C; Shen L; Hu Y; Wang Z; Wu F; Chen L
    Chem Asian J; 2012 May; 7(5):1013-7. PubMed ID: 22374889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A pyrolyzed polyacrylonitrile/selenium disulfide composite cathode with remarkable lithium and sodium storage performances.
    Li Z; Zhang J; Lu Y; Lou XWD
    Sci Adv; 2018 Jun; 4(6):eaat1687. PubMed ID: 29888331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lithium-sulfur batteries: electrochemistry, materials, and prospects.
    Yin YX; Xin S; Guo YG; Wan LJ
    Angew Chem Int Ed Engl; 2013 Dec; 52(50):13186-200. PubMed ID: 24243546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries.
    Cao Y; Li X; Aksay IA; Lemmon J; Nie Z; Yang Z; Liu J
    Phys Chem Chem Phys; 2011 May; 13(17):7660-5. PubMed ID: 21448499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new class of lithium and sodium rechargeable batteries based on selenium and selenium-sulfur as a positive electrode.
    Abouimrane A; Dambournet D; Chapman KW; Chupas PJ; Weng W; Amine K
    J Am Chem Soc; 2012 Mar; 134(10):4505-8. PubMed ID: 22364225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The First Introduction of Graphene to Rechargeable Li-CO2 Batteries.
    Zhang Z; Zhang Q; Chen Y; Bao J; Zhou X; Xie Z; Wei J; Zhou Z
    Angew Chem Int Ed Engl; 2015 May; 54(22):6550-3. PubMed ID: 25968053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cathode composites for Li-S batteries via the use of oxygenated porous architectures.
    Demir-Cakan R; Morcrette M; Nouar F; Davoisne C; Devic T; Gonbeau D; Dominko R; Serre C; Férey G; Tarascon JM
    J Am Chem Soc; 2011 Oct; 133(40):16154-60. PubMed ID: 21882857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries.
    Nelson J; Misra S; Yang Y; Jackson A; Liu Y; Wang H; Dai H; Andrews JC; Cui Y; Toney MF
    J Am Chem Soc; 2012 Apr; 134(14):6337-43. PubMed ID: 22432568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TPPi as a flame retardant for rechargeable lithium batteries with sulfur composite cathodes.
    Jia H; Wang J; Lin F; Monroe CW; Yang J; NuLi Y
    Chem Commun (Camb); 2014 Jul; 50(53):7011-3. PubMed ID: 24846751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries.
    Zhu X; Zhu Y; Murali S; Stoller MD; Ruoff RS
    ACS Nano; 2011 Apr; 5(4):3333-8. PubMed ID: 21443243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ReaxFF molecular dynamics simulations on lithiated sulfur cathode materials.
    Islam MM; Ostadhossein A; Borodin O; Yeates AT; Tipton WW; Hennig RG; Kumar N; van Duin AC
    Phys Chem Chem Phys; 2015 Feb; 17(5):3383-93. PubMed ID: 25529209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel cathode material for rechargeable lithium-sulfur batteries.
    Gronwald O; Garsuch A; Panchenko A
    Chimia (Aarau); 2013; 67(10):719-23. PubMed ID: 24388137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene-enveloped sulfur in a one pot reaction: a cathode with good coulombic efficiency and high practical sulfur content.
    Evers S; Nazar LF
    Chem Commun (Camb); 2012 Jan; 48(9):1233-5. PubMed ID: 22179052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SiO2-coated sulfur particles with mildly reduced graphene oxide as a cathode material for lithium-sulfur batteries.
    Campbell B; Bell J; Bay HH; Favors Z; Ionescu R; Ozkan CS; Ozkan M
    Nanoscale; 2015 Apr; 7(16):7051-5. PubMed ID: 25712745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A high-density graphene-sulfur assembly: a promising cathode for compact Li-S batteries.
    Zhang C; Liu DH; Lv W; Wang DW; Wei W; Zhou GM; Wang S; Li F; Li BH; Kang F; Yang QH
    Nanoscale; 2015 Mar; 7(13):5592-7. PubMed ID: 25626595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.