These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 22785430)

  • 21. Single-layered V2O5 a promising cathode material for rechargeable Li and Mg ion batteries: an ab initio study.
    Wang Z; Su Q; Deng H
    Phys Chem Chem Phys; 2013 Jun; 15(22):8705-9. PubMed ID: 23636124
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly dispersed sulfur in a porous aromatic framework as a cathode for lithium-sulfur batteries.
    Guo B; Ben T; Bi Z; Veith GM; Sun XG; Qiu S; Dai S
    Chem Commun (Camb); 2013 May; 49(43):4905-7. PubMed ID: 23604139
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molybdenum nitride based hybrid cathode for rechargeable lithium-O2 batteries.
    Dong S; Chen X; Zhang K; Gu L; Zhang L; Zhou X; Li L; Liu Z; Han P; Xu H; Yao J; Zhang C; Zhang X; Shang C; Cui G; Chen L
    Chem Commun (Camb); 2011 Oct; 47(40):11291-3. PubMed ID: 21927745
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrochemical (de)lithiation of 1D sulfur chains in Li-S batteries: a model system study.
    Yang CP; Yin YX; Guo YG; Wan LJ
    J Am Chem Soc; 2015 Feb; 137(6):2215-8. PubMed ID: 25650588
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced cycling performance and electrochemical reversibility of a novel sulfur-impregnated mesoporous hollow TiO2 sphere cathode for advanced Li-S batteries.
    Li J; Ding B; Xu G; Hou L; Zhang X; Yuan C
    Nanoscale; 2013 Jul; 5(13):5743-6. PubMed ID: 23719731
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Li ion battery materials with core-shell nanostructures.
    Su L; Jing Y; Zhou Z
    Nanoscale; 2011 Oct; 3(10):3967-83. PubMed ID: 21879116
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anthraquinone based polymer as high performance cathode material for rechargeable lithium batteries.
    Song Z; Zhan H; Zhou Y
    Chem Commun (Camb); 2009 Jan; (4):448-50. PubMed ID: 19137181
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of sulfur loading on the electrochemical performance of a sulfur-polymer composite cathode coated on aluminium foil.
    Doan TN; Gosselink D; Hoang TK; Chen P
    Phys Chem Chem Phys; 2014 Jul; 16(27):13843-8. PubMed ID: 24910180
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Superior electrochemical performance of sulfur/graphene nanocomposite material for high-capacity lithium-sulfur batteries.
    Wang B; Li K; Su D; Ahn H; Wang G
    Chem Asian J; 2012 Jun; 7(7):1637-43. PubMed ID: 22454319
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rechargeable batteries driven by redox reactions of Mn12 clusters with structural changes: XAFS analyses of the charging/discharging processes in molecular cluster batteries.
    Yoshikawa H; Hamanaka S; Miyoshi Y; Kondo Y; Shigematsu S; Akutagawa N; Sato M; Yokoyama T; Awaga K
    Inorg Chem; 2009 Oct; 48(19):9057-9. PubMed ID: 19746899
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Poly(2,5-dimercapto-1,3,4-thiadiazole) as a cathode for rechargeable lithium batteries with dramatically improved performance.
    Gao J; Lowe MA; Conte S; Burkhardt SE; Abruña HD
    Chemistry; 2012 Jul; 18(27):8521-6. PubMed ID: 22644940
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Li3V2(PO4)3/graphene nanocomposites as cathode material for lithium ion batteries.
    Liu H; Gao P; Fang J; Yang G
    Chem Commun (Camb); 2011 Aug; 47(32):9110-2. PubMed ID: 21735012
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Low-cost and facile one-pot synthesis of pure single-crystalline ε-Cu(0.95)V2O5 nanoribbons: high capacity cathode material for rechargeable Li-ion batteries.
    Hu W; Zhang XB; Cheng YL; Wu YM; Wang LM
    Chem Commun (Camb); 2011 May; 47(18):5250-2. PubMed ID: 21461425
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mesoporous magnesium manganese silicate as cathode materials for rechargeable magnesium batteries.
    NuLi Y; Yang J; Li Y; Wang J
    Chem Commun (Camb); 2010 Jun; 46(21):3794-6. PubMed ID: 20393663
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Controlling the intercalation chemistry to design high-performance dual-salt hybrid rechargeable batteries.
    Cho JH; Aykol M; Kim S; Ha JH; Wolverton C; Chung KY; Kim KB; Cho BW
    J Am Chem Soc; 2014 Nov; 136(46):16116-9. PubMed ID: 25364815
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel DMSO-based electrolyte for high performance rechargeable Li-O2 batteries.
    Xu D; Wang ZL; Xu JJ; Zhang LL; Zhang XB
    Chem Commun (Camb); 2012 Jul; 48(55):6948-50. PubMed ID: 22674122
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sulfur-anchored azulene as a cathode material for Li-S batteries.
    Chen Z; Droste J; Zhai G; Zhu J; Yang J; Hansen MR; Zhuang X
    Chem Commun (Camb); 2019 Aug; 55(61):9047-9050. PubMed ID: 31292571
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A feasibility study on the use of Li(4)V(3)O(8) as a high capacity cathode material for lithium-ion batteries.
    Ng SH; Tran N; Bramnik KG; Hibst H; Novák P
    Chemistry; 2008; 14(35):11141-8. PubMed ID: 18979463
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells.
    Ji L; Rao M; Zheng H; Zhang L; Li Y; Duan W; Guo J; Cairns EJ; Zhang Y
    J Am Chem Soc; 2011 Nov; 133(46):18522-5. PubMed ID: 22017295
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.