BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 22785579)

  • 1. Highly conductive free standing polypyrrole films prepared by freezing interfacial polymerization.
    Qi G; Huang L; Wang H
    Chem Commun (Camb); 2012 Aug; 48(66):8246-8. PubMed ID: 22785579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible regenerated cellulose/polypyrrole composite films with enhanced dielectric properties.
    Raghunathan SP; Narayanan S; Poulose AC; Joseph R
    Carbohydr Polym; 2017 Feb; 157():1024-1032. PubMed ID: 27987802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controllable fabrication of porous free-standing polypyrrole films via a gas phase polymerization.
    Lei J; Li Z; Lu X; Wang W; Bian X; Zheng T; Xue Y; Wang C
    J Colloid Interface Sci; 2011 Dec; 364(2):555-60. PubMed ID: 21925673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly thermostable, flexible, and conductive films prepared from cellulose, graphite, and polypyrrole nanoparticles.
    Chen J; Xu J; Wang K; Qian X; Sun R
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15641-8. PubMed ID: 26135618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High performance polypyrrole/SWCNTs composite film as a promising organic thermoelectric material.
    Liu Z; Sun J; Song H; Pan Y; Song Y; Zhu Y; Yao Y; Huang F; Zuo C
    RSC Adv; 2021 May; 11(29):17704-17709. PubMed ID: 35480213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemistry of conductive polymers 37. Nanoscale monitoring of electrical properties during electrochemical growth of polypyrrole and its aging.
    Lee HJ; Park SM
    J Phys Chem B; 2005 Jul; 109(27):13247-54. PubMed ID: 16852652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polypyrrole thin films formed by admicellar polymerization support the osteogenic differentiation of mesenchymal stem cells.
    Castano H; O'Rear EA; McFetridge PS; Sikavitsas VI
    Macromol Biosci; 2004 Aug; 4(8):785-94. PubMed ID: 15468272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polypyrrole capacitance characteristics with different doping ions and thicknesses.
    Wang J; Wu C; Wu P; Li X; Zhang M; Zhu J
    Phys Chem Chem Phys; 2017 Aug; 19(31):21165-21173. PubMed ID: 28752171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the polymerization potential on the transport properties of polypyrrole films.
    Bof Bufon CC; Heinzel T; Espindola P; Heinze J
    J Phys Chem B; 2010 Jan; 114(2):714-8. PubMed ID: 20020747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polypyrrole Encapsulated Nickel Nanorods for Conductivity Improvement by Magnetic Alignment.
    Zhao J; Wang J; Deng H; Tang S; Lan Q; Liang J; Liu C; Cao YC; Cheng S
    J Nanosci Nanotechnol; 2019 Sep; 19(9):5656-5660. PubMed ID: 30961721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New biocompatible polypyrrole-based films with good blood compatibility and high electrical conductivity.
    Mao C; Zhu A; Wu Q; Chen X; Kim J; Shen J
    Colloids Surf B Biointerfaces; 2008 Nov; 67(1):41-5. PubMed ID: 18786815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organic single-crystal surface-induced polymerization of conducting polypyrroles.
    Jeon SS; Park JK; Yoon CS; Im SS
    Langmuir; 2009 Oct; 25(19):11420-4. PubMed ID: 19681625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Regulation of Osteogenesis Using Electroactive Polypyrrole Films.
    Li C; Hsu YT; Hu WW
    Polymers (Basel); 2016 Jul; 8(7):. PubMed ID: 30974534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between chain length, disorder, and resistivity in polypyrrole films.
    Bof Bufon CC; Vollmer J; Heinzel T; Espindola P; John H; Heinze J
    J Phys Chem B; 2005 Oct; 109(41):19191-9. PubMed ID: 16853476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled electrochemical synthesis of polypyrrole nanoparticle thin film and its redox transition to a highly conductive and stable polypyrrole variant.
    West R; Zeng X
    Langmuir; 2008 Oct; 24(19):11076-81. PubMed ID: 18729336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites.
    Yao Q; Chen L; Zhang W; Liufu S; Chen X
    ACS Nano; 2010 Apr; 4(4):2445-51. PubMed ID: 20359234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biotin-doped porous polypyrrole films for electrically controlled nanoparticle release.
    Cho Y; Borgens RB
    Langmuir; 2011 May; 27(10):6316-22. PubMed ID: 21500819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Comparative Study on Optical, Electrical, and Mechanical Properties of Conducting Polymer-Based Electrodes.
    Lee S; Hong JY; Jang J
    Small; 2015 Nov; 11(41):5498-504. PubMed ID: 26332082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ FTIR spectroscopy study of the break-in phenomenon observed for PPy/PVS films in acetonitrile.
    Fernandez Romero AJ; López Cascales JJ; Otero TF
    J Phys Chem B; 2005 Nov; 109(44):21078-85. PubMed ID: 16853730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of polypyrrole gas sensor for detection of NH
    Jain A; Nabeel AN; Bhagwat S; Kumar R; Sharma S; Kozak D; Hunjet A; Kumar A; Singh R
    Heliyon; 2023 Jul; 9(7):e17611. PubMed ID: 37455973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.