These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 227860)
1. Changes in the EPR signal of dinitrogenase from Azotobacter vinelandii during the lag period before hydrogen evolution begins. Hageman RV; Burris RH J Biol Chem; 1979 Nov; 254(22):11189-92. PubMed ID: 227860 [TBL] [Abstract][Full Text] [Related]
2. Kinetics and mechanism of the reaction of cyanide with molybdenum nitrogenase from Azotobacter vinelandii. Lowe DJ; Fisher K; Thorneley RN; Vaughn SA; Burgess BK Biochemistry; 1989 Oct; 28(21):8460-6. PubMed ID: 2605195 [TBL] [Abstract][Full Text] [Related]
3. Solubilization of the iron molybdenum cofactor of Azotobacter vinelandii nitrogenase in dimethylformamide and acetonitrile. Lough SM; Jacobs DL; Lyons DM; Watt GD; McDonald JW Biochem Biophys Res Commun; 1986 Sep; 139(2):740-6. PubMed ID: 3021140 [TBL] [Abstract][Full Text] [Related]
4. H2-uptake activity of the MoFe protein component of Azotobacter vinelandii nitrogenase. Wang ZC; Watt GD Proc Natl Acad Sci U S A; 1984 Jan; 81(2):376-9. PubMed ID: 6320185 [TBL] [Abstract][Full Text] [Related]
5. Role of magnesium adenosine 5'-triphosphate in the hydrogen evolution reaction catalyzed by nitrogenase from Azotobacter vinelandii. Hageman RV; Orme-Johnson WH; Burris RH Biochemistry; 1980 May; 19(11):2333-42. PubMed ID: 6930302 [TBL] [Abstract][Full Text] [Related]
6. Comparison of redox and EPR properties of the molybdenum iron proteins of Clostridium pasteurianum and Azotobacter vinelandii nitrogenases. Morgan TV; Mortenson LE; McDonald JW; Watt GD J Inorg Biochem; 1988 Jun; 33(2):111-20. PubMed ID: 2842451 [TBL] [Abstract][Full Text] [Related]
8. Apodinitrogenase: purification, association with a 20-kilodalton protein, and activation by the iron-molybdenum cofactor in the absence of dinitrogenase reductase. Paustian TD; Shah VK; Roberts GP Biochemistry; 1990 Apr; 29(14):3515-22. PubMed ID: 2162195 [TBL] [Abstract][Full Text] [Related]
9. Stoichiometry and spectral properties of the MoFe cofactor and noncofactor redox centers in the MoFe protein of nitrogenase from Azotobacter vinelandii. Watt GD; Burns A; Tennent DL Biochemistry; 1981 Dec; 20(25):7272-7. PubMed ID: 6274395 [TBL] [Abstract][Full Text] [Related]
10. Electron allocation to alternative substrates of Azotobacter nitrogenase is controlled by the electron flux through dinitrogenase. Hageman RV; Burris RH Biochim Biophys Acta; 1980 Jun; 591(1):63-75. PubMed ID: 6930303 [TBL] [Abstract][Full Text] [Related]
11. Magnetic susceptibility studies of native and thionine-oxidized molybdenum-iron protein from Azotobacter vinelandii nitrogenase. Smith JP; Emptage MH; Orme-Johnson WH J Biol Chem; 1982 Mar; 257(5):2310-3. PubMed ID: 6949899 [TBL] [Abstract][Full Text] [Related]
12. Iron-molybdenum cofactor of nitrogenase: electrochemical determination of the electron stoichiometry of the oxidized/semi-reduced couple. Schultz FA; Gheller SF; Newton WE Biochem Biophys Res Commun; 1988 Apr; 152(2):629-35. PubMed ID: 2835040 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of iron-molybdenum cofactor binding to component I of nitrogenase. Shah VK; Ugalde RA; Imperial J; Brill WJ J Biol Chem; 1985 Apr; 260(7):3891-4. PubMed ID: 3856566 [TBL] [Abstract][Full Text] [Related]
14. Characterization of the metal clusters in the nitrogenase molybdenum-iron and vanadium-iron proteins of Azotobacter vinelandii using magnetic circular dichroism spectroscopy. Morningstar JE; Johnson MK; Case EE; Hales BJ Biochemistry; 1987 Apr; 26(7):1795-800. PubMed ID: 3474027 [TBL] [Abstract][Full Text] [Related]
15. In vitro synthesis of the iron-molybdenum cofactor of nitrogenase. Shah VK; Imperial J; Ugalde RA; Ludden PW; Brill WJ Proc Natl Acad Sci U S A; 1986 Mar; 83(6):1636-40. PubMed ID: 3006060 [TBL] [Abstract][Full Text] [Related]
16. ADP-ribosylation of dinitrogenase reductase from Clostridium pasteurianum prevents its inhibition of nitrogenase from Azotobacter vinelandii. Murrell SA; Lowery RG; Ludden PW Biochem J; 1988 Apr; 251(2):609-12. PubMed ID: 3135803 [TBL] [Abstract][Full Text] [Related]
17. MgATP-independent hydrogen evolution catalysed by nitrogenase: an explanation for the missing electron(s) in the MgADP-AlF4 transition-state complex. Yousafzai FK; Eady RR Biochem J; 1999 May; 339 ( Pt 3)(Pt 3):511-5. PubMed ID: 10215587 [TBL] [Abstract][Full Text] [Related]
18. Klebsiella pneumoniae nitrogenase. The pre-steady-state kinetics of MoFe-protein reduction and hydrogen evolution under conditions of limiting electron flux show that the rates of association with the Fe-protein and electron transfer are independent of the oxidation level of the MoFe-protein. Fisher K; Lowe DJ; Thorneley RN Biochem J; 1991 Oct; 279 ( Pt 1)(Pt 1):81-5. PubMed ID: 1656943 [TBL] [Abstract][Full Text] [Related]
19. Isolation of a molybdenum--iron cluster from nitrogenase. Shah VK; Brill WJ Proc Natl Acad Sci U S A; 1981 Jun; 78(6):3438-40. PubMed ID: 6267591 [TBL] [Abstract][Full Text] [Related]
20. Electron-transfer studies involving flavodoxin and a natural redox partner, the iron protein of nitrogenase. Conformational constraints on protein-protein interactions and the kinetics of electron transfer within the protein complex. Thorneley RN; Deistung J Biochem J; 1988 Jul; 253(2):587-95. PubMed ID: 3140782 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]