BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 22786622)

  • 1. Organic carbonates as stabilizing solvents for transition-metal nanoparticles.
    Vollmer C; Thomann R; Janiak C
    Dalton Trans; 2012 Aug; 41(32):9722-7. PubMed ID: 22786622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave irradiation for the facile synthesis of transition-metal nanoparticles (NPs) in ionic liquids (ILs) from metal-carbonyl precursors and Ru-, Rh-, and Ir-NP/IL dispersions as biphasic liquid-liquid hydrogenation nanocatalysts for cyclohexene.
    Vollmer C; Redel E; Abu-Shandi K; Thomann R; Manyar H; Hardacre C; Janiak C
    Chemistry; 2010 Mar; 16(12):3849-58. PubMed ID: 20187043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rh-catalyzed asymmetric hydrogenation of unsaturated lactate precursors in propylene carbonate.
    Schäffner B; Andrushko V; Holz J; Verevkin SP; Börner A
    ChemSusChem; 2008; 1(11):934-40. PubMed ID: 18956407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organic carbonates as alternative solvents for asymmetric hydrogenation.
    Schäffner B; Andrushko V; Bayardon J; Holz J; Börner A
    Chirality; 2009 Oct; 21(9):857-61. PubMed ID: 19455615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of Cu, Zn and Cu/Zn brass alloy nanoparticles from metal amidinate precursors in ionic liquids or propylene carbonate with relevance to methanol synthesis.
    Schütte K; Meyer H; Gemel C; Barthel J; Fischer RA; Janiak C
    Nanoscale; 2014 Mar; 6(6):3116-26. PubMed ID: 24492885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beneficial effects of microwave-assisted heating versus conventional heating in noble metal nanoparticle synthesis.
    Dahal N; García S; Zhou J; Humphrey SM
    ACS Nano; 2012 Nov; 6(11):9433-46. PubMed ID: 23033897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Propylene carbonate as a solvent for asymmetric hydrogenations.
    Bayardon J; Holz J; Schäffner B; Andrushko V; Verevkin S; Preetz A; Börner A
    Angew Chem Int Ed Engl; 2007; 46(31):5971-4. PubMed ID: 17610232
    [No Abstract]   [Full Text] [Related]  

  • 8. Recyclable rhodium nanoparticles: green hydrothermal synthesis, characterization, and highly catalytic performance in reduction of nitroarenes.
    Lee Y; Jang S; Cho CW; Bae JS; Park S; Park KH
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7477-81. PubMed ID: 24245277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal nanoparticles via the atom-economy green approach.
    Kalidindi SB; Sanyal U; Jagirdar BR
    Inorg Chem; 2010 May; 49(9):3965-7. PubMed ID: 20369899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size and size distribution balance the dispersion of colloidal CeO2 nanoparticles in organic solvents.
    Arita T; Yoo J; Ueda Y; Adschiri T
    Nanoscale; 2010 May; 2(5):689-93. PubMed ID: 20648311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of the reduction efficiency of soluble starch for platinum nanoparticles synthesis.
    Tongsakul D; Wongravee K; Thammacharoen C; Ekgasit S
    Carbohydr Res; 2012 Aug; 357():90-7. PubMed ID: 22682312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters.
    De La Cruz C; Sheppard N
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):7-28. PubMed ID: 21123107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbohydrate-derived 1,3-diphosphite ligands as chiral nanoparticle stabilizers: promising catalytic systems for asymmetric hydrogenation.
    Gual A; Godard C; Philippot K; Chaudret B; Denicourt-Nowicki A; Roucoux A; Castillón S; Claver C
    ChemSusChem; 2009; 2(8):769-79. PubMed ID: 19598200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Green synthesis and characterization of polymer-stabilized silver nanoparticles.
    Medina-Ramirez I; Bashir S; Luo Z; Liu JL
    Colloids Surf B Biointerfaces; 2009 Oct; 73(2):185-91. PubMed ID: 19539451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigations of the conversion of inorganic carbonates to methane.
    Jagadeesan D; Eswaramoorthy M; Rao CN
    ChemSusChem; 2009; 2(9):878-82. PubMed ID: 19731284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic carbonates as alternative solvents for palladium-catalyzed substitution reactions.
    Schäffner B; Holz J; Verevkin SP; Börner A
    ChemSusChem; 2008; 1(3):249-53. PubMed ID: 18605214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rhodium-complex-catalyzed asymmetric hydrogenation: transformation of precatalysts into active species.
    Preetz A; Drexler HJ; Fischer C; Dai Z; Börner A; Baumann W; Spannenberg A; Thede R; Heller D
    Chemistry; 2008; 14(5):1445-51. PubMed ID: 18034444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid green synthesis of palladium nanoparticles using the dried leaf of Anacardium occidentale.
    Sheny DS; Philip D; Mathew J
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jun; 91():35-8. PubMed ID: 22349890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separating nanoparticles from microemulsions.
    Nazar MF; Myakonkaya O; Shah SS; Eastoe J
    J Colloid Interface Sci; 2011 Feb; 354(2):624-9. PubMed ID: 21134683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal nanoparticle/ionic liquid/cellulose: new catalytically active membrane materials for hydrogenation reactions.
    Gelesky MA; Scheeren CW; Foppa L; Pavan FA; Dias SL; Dupont J
    Biomacromolecules; 2009 Jul; 10(7):1888-93. PubMed ID: 19435363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.