BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 22786639)

  • 21. Response of western diamondback rattlesnakes Crotalus atrox to airborne sounds.
    Young BA; Aguiar A
    J Exp Biol; 2002 Oct; 205(Pt 19):3087-92. PubMed ID: 12200411
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prey envenomation does not improve digestive performance in western diamondback rattlesnakes (Crotalus atrox).
    McCue MD
    J Exp Zool A Ecol Genet Physiol; 2007 Oct; 307(10):568-77. PubMed ID: 17671964
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Winter profile of plasma sex steroid levels in free-living male western diamond-backed rattlesnakes, Crotalus atrox (Serpentes: Viperidae).
    Schuett GW; Repp RA; Taylor EN; DeNardo DF; Earley RL; Van Kirk EA; Murdoch WJ
    Gen Comp Endocrinol; 2006 Oct; 149(1):72-80. PubMed ID: 16828091
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phylogeographic structure and historical demography of the western diamondback rattlesnake (Crotalus atrox): A perspective on North American desert biogeography.
    Castoe TA; Spencer CL; Parkinson CL
    Mol Phylogenet Evol; 2007 Jan; 42(1):193-212. PubMed ID: 16934495
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 2-Deoxyglucose labelling of the infrared sensory system in the rattlesnake, Crotalus viridis.
    Gruberg ER; Newman EA; Hartline PH
    J Comp Neurol; 1984 Nov; 229(3):321-8. PubMed ID: 6501607
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tail morphology in the Western Diamond-backed rattlesnake, Crotalus atrox.
    Savitzky AH; Moon BR
    J Morphol; 2008 Aug; 269(8):935-44. PubMed ID: 18553368
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isolation of multiple isoforms of alpha-fibrinogenase from the Western diamondback rattlesnake, Crotalus atrox: N-terminal sequence homology with ancrod, an antithrombotic agent from Malayan viper.
    Hung CC; Chiou SH
    Biochem Biophys Res Commun; 1994 Jun; 201(3):1414-23. PubMed ID: 8024586
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Infrared snake eyes: TRPA1 and the thermal sensitivity of the snake pit organ.
    Panzano VC; Kang K; Garrity PA
    Sci Signal; 2010 Jun; 3(127):pe22. PubMed ID: 20571127
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploring the venom proteome of the western diamondback rattlesnake, Crotalus atrox, via snake venomics and combinatorial peptide ligand library approaches.
    Calvete JJ; Fasoli E; Sanz L; Boschetti E; Righetti PG
    J Proteome Res; 2009 Jun; 8(6):3055-67. PubMed ID: 19371136
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synaptic convergence of afferent inputs in primary infrared-sensitive nucleus (LTTD) neurons of rattlesnakes (Crotalinae) as the origin for sensory contrast enhancement.
    Bothe MS; Luksch H; Straka H; Kohl T
    J Exp Biol; 2018 Sep; 221(Pt 17):. PubMed ID: 30037882
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The infrared trigemino-tectal pathway in the rattlesnake and in the python.
    Newman EA; Gruberg ER; Hartline PH
    J Comp Neurol; 1980 Jun; 191(3):465-77. PubMed ID: 7410602
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Whole-exome sequencing and genome-wide evolutionary analyses identify novel candidate genes associated with infrared perception in pit vipers.
    Tu N; Liang D; Zhang P
    Sci Rep; 2020 Aug; 10(1):13033. PubMed ID: 32747674
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanisms controlling venom expulsion in the western diamondback rattlesnake, Crotalus atrox.
    Young BA; Kardong KV
    J Exp Zool A Ecol Genet Physiol; 2007 Jan; 307(1):18-27. PubMed ID: 17094108
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fang tip spread, puncture distance, and suction for snake bite.
    Zamudio KR; Hardy DL; Martins M; Greene HW
    Toxicon; 2000 May; 38(5):723-8. PubMed ID: 10673163
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Response of the infrared receptors of a crotaline snake to ethanol.
    Moon C; Terashima S
    Neurosci Lett; 2002 Dec; 334(1):29-32. PubMed ID: 12431768
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Directional sensitivity of dendritic calcium responses to wind stimuli in the cricket giant interneuron.
    Ogawa H; Baba Y; Oka K
    Neurosci Lett; 2004 Apr; 358(3):185-8. PubMed ID: 15039112
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rock squirrel (Spermophilus variegatus) blood sera affects proteolytic and hemolytic activities of rattlesnake venoms.
    Biardi JE; Coss RG
    Toxicon; 2011 Feb; 57(2):323-31. PubMed ID: 21184770
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sensitivity to thermal stimulation in prairie rattlesnakes (Crotalus viridis) after bilateral anesthetization of the facial pits.
    Chiszar D; Dickman D; Colton J
    Behav Neural Biol; 1986 Jan; 45(1):143-9. PubMed ID: 3954711
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Do free-ranging rattlesnakes use thermal cues to evaluate prey?
    Schraft HA; Goodman C; Clark RW
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2018 Mar; 204(3):295-303. PubMed ID: 29218413
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kangaroo rats change temperature when investigating rattlesnake predators.
    Schraft HA; Clark RW
    Physiol Behav; 2017 May; 173():174-178. PubMed ID: 28188761
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.