These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 22786742)

  • 41. Porous Co3O4 nanoneedle arrays growing directly on copper foils and their ultrafast charging/discharging as lithium-ion battery anodes.
    Xue XY; Yuan S; Xing LL; Chen ZH; He B; Chen YJ
    Chem Commun (Camb); 2011 Apr; 47(16):4718-20. PubMed ID: 21412563
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Carbon and graphene double protection strategy to improve the SnO(x) electrode performance anodes for lithium-ion batteries.
    Zhu J; Lei D; Zhang G; Li Q; Lu B; Wang T
    Nanoscale; 2013 Jun; 5(12):5499-505. PubMed ID: 23670638
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Improved electrochemical capacity of precursor-derived Si(B)CN-carbon nanotube composite as Li-ion battery anode.
    Bhandavat R; Singh G
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5092-7. PubMed ID: 23030550
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Solution-grown germanium nanowire anodes for lithium-ion batteries.
    Chockla AM; Klavetter KC; Mullins CB; Korgel BA
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4658-64. PubMed ID: 22894797
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cu doped V2O5 flowers as cathode material for high-performance lithium ion batteries.
    Yu H; Rui X; Tan H; Chen J; Huang X; Xu C; Liu W; Yu DY; Hng HH; Hoster HE; Yan Q
    Nanoscale; 2013 Jun; 5(11):4937-43. PubMed ID: 23629762
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Three-dimensionally ordered macroporous Li3V2(PO4)3/C nanocomposite cathode material for high-capacity and high-rate Li-ion batteries.
    Li D; Tian M; Xie R; Li Q; Fan X; Gou L; Zhao P; Ma S; Shi Y; Yong HT
    Nanoscale; 2014 Mar; 6(6):3302-8. PubMed ID: 24510276
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Graphene--nanotube--iron hierarchical nanostructure as lithium ion battery anode.
    Lee SH; Sridhar V; Jung JH; Karthikeyan K; Lee YS; Mukherjee R; Koratkar N; Oh IK
    ACS Nano; 2013 May; 7(5):4242-51. PubMed ID: 23550743
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Facile Synthesis of Rod-like Cu
    Li H; Jiang J; Wang F; Huang J; Wang Y; Zhang Y; Zhao J
    ChemSusChem; 2017 May; 10(10):2235-2241. PubMed ID: 28383799
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Cable-Shaped Lithium Sulfur Battery.
    Fang X; Weng W; Ren J; Peng H
    Adv Mater; 2016 Jan; 28(3):491-6. PubMed ID: 26585740
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A novel method to enhance the conductance of transitional metal oxide electrodes.
    Wang R; Chen Z; Yu H; Jia X; Gao L; Sun J; Hicks RF; Lu Y
    Nanoscale; 2014 Apr; 6(7):3791-5. PubMed ID: 24577667
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Facile solvothermal synthesis of mesoporous Cu₂SnS₃ spheres and their application in lithium-ion batteries.
    Qu B; Zhang M; Lei D; Zeng Y; Chen Y; Chen L; Li Q; Wang Y; Wang T
    Nanoscale; 2011 Sep; 3(9):3646-51. PubMed ID: 21792405
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage.
    Li WJ; Chou SL; Wang JZ; Liu HK; Dou SX
    Nano Lett; 2013; 13(11):5480-4. PubMed ID: 24168466
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Carbon nanomaterials used as conductive additives in lithium ion batteries.
    Zhang Q; Yu Z; Du P; Su C
    Recent Pat Nanotechnol; 2010 Jun; 4(2):100-10. PubMed ID: 20415660
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Porous nitrogen-doped carbon derived from silk fibroin protein encapsulating sulfur as a superior cathode material for high-performance lithium-sulfur batteries.
    Zhang J; Cai Y; Zhong Q; Lai D; Yao J
    Nanoscale; 2015 Nov; 7(42):17791-7. PubMed ID: 26456870
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mesoporous anatase TiO2 nanorods as thermally robust anode materials for Li-ion batteries: detailed insight into the formation mechanism.
    Seisenbaeva GA; Nedelec JM; Daniel G; Tiseanu C; Parvulescu V; Pol VG; Abrego L; Kessler VG
    Chemistry; 2013 Dec; 19(51):17439-44. PubMed ID: 24243542
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Preparation of fluorine-doped, carbon-encapsulated hollow Fe3O4 spheres as an efficient anode material for Li-ion batteries.
    Geng H; Zhou Q; Pan Y; Gu H; Zheng J
    Nanoscale; 2014 Apr; 6(7):3889-94. PubMed ID: 24598908
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electrostatic spray deposition of porous SnO₂/graphene anode films and their enhanced lithium-storage properties.
    Jiang Y; Yuan T; Sun W; Yan M
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6216-20. PubMed ID: 23106602
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Highly monodispersed tin oxide/mesoporous starbust carbon composite as high-performance Li-ion battery anode.
    Chen J; Yano K
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7682-7. PubMed ID: 23947639
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Copper-doped dual phase Li4Ti5O12-TiO2 nanosheets as high-rate and long cycle life anodes for high-power lithium-ion batteries.
    Chen C; Huang Y; An C; Zhang H; Wang Y; Jiao L; Yuan H
    ChemSusChem; 2015 Jan; 8(1):114-22. PubMed ID: 25425492
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Prelithiation of silicon-carbon nanotube anodes for lithium ion batteries by stabilized lithium metal powder (SLMP).
    Forney MW; Ganter MJ; Staub JW; Ridgley RD; Landi BJ
    Nano Lett; 2013 Sep; 13(9):4158-63. PubMed ID: 23902472
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.