BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 22786888)

  • 1. Synergistic interactions between carotene ring hydroxylases drive lutein formation in plant carotenoid biosynthesis.
    Quinlan RF; Shumskaya M; Bradbury LM; Beltrán J; Ma C; Kennelly EJ; Wurtzel ET
    Plant Physiol; 2012 Sep; 160(1):204-14. PubMed ID: 22786888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthetic routes of hydroxylated carotenoids (xanthophylls) in Marchantia polymorpha, and production of novel and rare xanthophylls through pathway engineering in Escherichia coli.
    Takemura M; Maoka T; Misawa N
    Planta; 2015 Mar; 241(3):699-710. PubMed ID: 25467956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Arabidopsis LUT1 locus encodes a member of the cytochrome p450 family that is required for carotenoid epsilon-ring hydroxylation activity.
    Tian L; Musetti V; Kim J; Magallanes-Lundback M; DellaPenna D
    Proc Natl Acad Sci U S A; 2004 Jan; 101(1):402-7. PubMed ID: 14709673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defining the primary route for lutein synthesis in plants: the role of Arabidopsis carotenoid beta-ring hydroxylase CYP97A3.
    Kim J; DellaPenna D
    Proc Natl Acad Sci U S A; 2006 Feb; 103(9):3474-9. PubMed ID: 16492736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rice carotenoid β-ring hydroxylase CYP97A4 is involved in lutein biosynthesis.
    Lv MZ; Chao DY; Shan JX; Zhu MZ; Shi M; Gao JP; Lin HX
    Plant Cell Physiol; 2012 Jun; 53(6):987-1002. PubMed ID: 22470056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning and Functional Characterization of the Maize (Zea mays L.) Carotenoid Epsilon Hydroxylase Gene.
    Chang S; Berman J; Sheng Y; Wang Y; Capell T; Shi L; Ni X; Sandmann G; Christou P; Zhu C
    PLoS One; 2015; 10(6):e0128758. PubMed ID: 26030746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional Identification of Two Types of Carotene Hydroxylases from the Green Alga
    Liang MH; Xie H; Chen HH; Liang ZC; Jiang JG
    ACS Synth Biol; 2020 Jun; 9(6):1246-1253. PubMed ID: 32408742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carotenoid biosynthesis in the primitive red alga Cyanidioschyzon merolae.
    Cunningham FX; Lee H; Gantt E
    Eukaryot Cell; 2007 Mar; 6(3):533-45. PubMed ID: 17085635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional analysis of beta- and epsilon-ring carotenoid hydroxylases in Arabidopsis.
    Tian L; Magallanes-Lundback M; Musetti V; DellaPenna D
    Plant Cell; 2003 Jun; 15(6):1320-32. PubMed ID: 12782726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The evolution and function of carotenoid hydroxylases in Arabidopsis.
    Kim J; Smith JJ; Tian L; Dellapenna D
    Plant Cell Physiol; 2009 Mar; 50(3):463-79. PubMed ID: 19147649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arabidopsis carotenoid mutants demonstrate that lutein is not essential for photosynthesis in higher plants.
    Pogson B; McDonald KA; Truong M; Britton G; DellaPenna D
    Plant Cell; 1996 Sep; 8(9):1627-39. PubMed ID: 8837513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning and functional characterization of the maize carotenoid isomerase and β-carotene hydroxylase genes and their regulation during endosperm maturation.
    Li Q; Farre G; Naqvi S; Breitenbach J; Sanahuja G; Bai C; Sandmann G; Capell T; Christou P; Zhu C
    Transgenic Res; 2010 Dec; 19(6):1053-68. PubMed ID: 20221689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of P450 carotenoid beta- and epsilon-hydroxylases of tomato and transcriptional regulation of xanthophyll biosynthesis in root, leaf, petal and fruit.
    Stigliani AL; Giorio G; D'Ambrosio C
    Plant Cell Physiol; 2011 May; 52(5):851-65. PubMed ID: 21450689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Over-expression of Arabidopsis thaliana carotenoid hydroxylases individually and in combination with a beta-carotene ketolase provides insight into in vivo functions.
    Kim JE; Cheng KM; Craft NE; Hamberger B; Douglas CJ
    Phytochemistry; 2010 Feb; 71(2-3):168-78. PubMed ID: 19939422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Escherichia coli as a platform for functional expression of plant P450 carotene hydroxylases.
    Quinlan RF; Jaradat TT; Wurtzel ET
    Arch Biochem Biophys; 2007 Feb; 458(2):146-57. PubMed ID: 17196929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Down-regulation of β-carotene hydroxylase increases β-carotene and total carotenoids enhancing salt stress tolerance in transgenic cultured cells of sweetpotato.
    Kim SH; Ahn YO; Ahn MJ; Lee HS; Kwak SS
    Phytochemistry; 2012 Feb; 74():69-78. PubMed ID: 22154923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Young Leaf Chlorosis 1, a chloroplast-localized gene required for chlorophyll and lutein accumulation during early leaf development in rice.
    Zhou K; Ren Y; Lv J; Wang Y; Liu F; Zhou F; Zhao S; Chen S; Peng C; Zhang X; Guo X; Cheng Z; Wang J; Wu F; Jiang L; Wan J
    Planta; 2013 Jan; 237(1):279-92. PubMed ID: 23053539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression and functional analysis of citrus carotene hydroxylases: unravelling the xanthophyll biosynthesis in citrus fruits.
    Ma G; Zhang L; Yungyuen W; Tsukamoto I; Iijima N; Oikawa M; Yamawaki K; Yahata M; Kato M
    BMC Plant Biol; 2016 Jun; 16(1):148. PubMed ID: 27358074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehending crystalline β-carotene accumulation by comparing engineered cell models and the natural carotenoid-rich system of citrus.
    Cao H; Zhang J; Xu J; Ye J; Yun Z; Xu Q; Xu J; Deng X
    J Exp Bot; 2012 Jul; 63(12):4403-17. PubMed ID: 22611233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production and structural characterization of the cytochrome P450 enzymes in carotene ring hydroxylation.
    Wang J; Niu G; Guo Q; Liu L
    Methods Enzymol; 2022; 671():223-241. PubMed ID: 35878979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.