These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
346 related articles for article (PubMed ID: 22786913)
1. Progression of patterns (POP): a machine classifier algorithm to identify glaucoma progression in visual fields. Goldbaum MH; Lee I; Jang G; Balasubramanian M; Sample PA; Weinreb RN; Liebmann JM; Girkin CA; Anderson DR; Zangwill LM; Fredette MJ; Jung TP; Medeiros FA; Bowd C Invest Ophthalmol Vis Sci; 2012 Sep; 53(10):6557-67. PubMed ID: 22786913 [TBL] [Abstract][Full Text] [Related]
2. Effect of focal lamina cribrosa defect on glaucomatous visual field progression. Faridi OS; Park SC; Kabadi R; Su D; De Moraes CG; Liebmann JM; Ritch R Ophthalmology; 2014 Aug; 121(8):1524-30. PubMed ID: 24697910 [TBL] [Abstract][Full Text] [Related]
3. Optic disc progression and rates of visual field change in treated glaucoma. De Moraes CG; Liebmann JM; Park SC; Teng CC; Nemiroff J; Tello C; Ritch R Acta Ophthalmol; 2013 Mar; 91(2):e86-91. PubMed ID: 23356423 [TBL] [Abstract][Full Text] [Related]
4. The Association Between Clinical Features Seen on Fundus Photographs and Glaucomatous Damage Detected on Visual Fields and Optical Coherence Tomography Scans. Alhadeff PA; De Moraes CG; Chen M; Raza AS; Ritch R; Hood DC J Glaucoma; 2017 May; 26(5):498-504. PubMed ID: 28333890 [TBL] [Abstract][Full Text] [Related]
5. Unsupervised machine learning with independent component analysis to identify areas of progression in glaucomatous visual fields. Sample PA; Boden C; Zhang Z; Pascual J; Lee TW; Zangwill LM; Weinreb RN; Crowston JG; Hoffmann EM; Medeiros FA; Sejnowski T; Goldbaum M Invest Ophthalmol Vis Sci; 2005 Oct; 46(10):3684-92. PubMed ID: 16186350 [TBL] [Abstract][Full Text] [Related]
6. Unsupervised Gaussian Mixture-Model With Expectation Maximization for Detecting Glaucomatous Progression in Standard Automated Perimetry Visual Fields. Yousefi S; Balasubramanian M; Goldbaum MH; Medeiros FA; Zangwill LM; Weinreb RN; Liebmann JM; Girkin CA; Bowd C Transl Vis Sci Technol; 2016 May; 5(3):2. PubMed ID: 27152250 [TBL] [Abstract][Full Text] [Related]
7. Progression of retinal nerve fiber layer thinning in glaucoma assessed by cirrus optical coherence tomography-guided progression analysis. Na JH; Sung KR; Baek S; Lee JY; Kim S Curr Eye Res; 2013 Mar; 38(3):386-95. PubMed ID: 23441595 [TBL] [Abstract][Full Text] [Related]
8. Risk of Visual Field Progression in Glaucoma Patients with Progressive Retinal Nerve Fiber Layer Thinning: A 5-Year Prospective Study. Yu M; Lin C; Weinreb RN; Lai G; Chiu V; Leung CK Ophthalmology; 2016 Jun; 123(6):1201-10. PubMed ID: 27001534 [TBL] [Abstract][Full Text] [Related]
9. Prediction of Visual Field Progression with Baseline and Longitudinal Structural Measurements Using Deep Learning. Mohammadzadeh V; Wu S; Besharati S; Davis T; Vepa A; Morales E; Edalati K; Rafiee M; Martinyan A; Zhang D; Scalzo F; Caprioli J; Nouri-Mahdavi K Am J Ophthalmol; 2024 Jun; 262():141-152. PubMed ID: 38354971 [TBL] [Abstract][Full Text] [Related]
10. Prediction of Glaucoma Progression with Structural Parameters: Comparison of Optical Coherence Tomography and Clinical Disc Parameters. Daneshvar R; Yarmohammadi A; Alizadeh R; Henry S; Law SK; Caprioli J; Nouri-Mahdavi K Am J Ophthalmol; 2019 Dec; 208():19-29. PubMed ID: 31247169 [TBL] [Abstract][Full Text] [Related]
11. Quantifying discordance between structure and function measurements in the clinical assessment of glaucoma. Zhu H; Crabb DP; Fredette MJ; Anderson DR; Garway-Heath DF Arch Ophthalmol; 2011 Sep; 129(9):1167-74. PubMed ID: 21555599 [TBL] [Abstract][Full Text] [Related]
12. Integrating Macular Ganglion Cell Inner Plexiform Layer and Parapapillary Retinal Nerve Fiber Layer Measurements to Detect Glaucoma Progression. Hou HW; Lin C; Leung CK Ophthalmology; 2018 Jun; 125(6):822-831. PubMed ID: 29433852 [TBL] [Abstract][Full Text] [Related]
13. Bayesian machine learning classifiers for combining structural and functional measurements to classify healthy and glaucomatous eyes. Bowd C; Hao J; Tavares IM; Medeiros FA; Zangwill LM; Lee TW; Sample PA; Weinreb RN; Goldbaum MH Invest Ophthalmol Vis Sci; 2008 Mar; 49(3):945-53. PubMed ID: 18326717 [TBL] [Abstract][Full Text] [Related]
14. Progression detection capability of macular thickness in advanced glaucomatous eyes. Sung KR; Sun JH; Na JH; Lee JY; Lee Y Ophthalmology; 2012 Feb; 119(2):308-13. PubMed ID: 22182800 [TBL] [Abstract][Full Text] [Related]
15. Optic disc torsion presenting as unilateral glaucomatous-appearing visual field defect in young myopic Korean eyes. Lee KS; Lee JR; Kook MS Ophthalmology; 2014 May; 121(5):1013-9. PubMed ID: 24507857 [TBL] [Abstract][Full Text] [Related]
16. 5-year disease progression of patients across the glaucoma spectrum assessed by structural and functional tools. Seth NG; Kaushik S; Kaur S; Raj S; Pandav SS Br J Ophthalmol; 2018 Jun; 102(6):802-807. PubMed ID: 28939691 [TBL] [Abstract][Full Text] [Related]
18. Detection of progressive retinal nerve fiber layer thickness loss with optical coherence tomography using 4 criteria for functional progression. Grewal DS; Sehi M; Paauw JD; Greenfield DS; J Glaucoma; 2012; 21(4):214-20. PubMed ID: 21654510 [TBL] [Abstract][Full Text] [Related]
19. Predicting Development of Glaucomatous Visual Field Conversion Using Baseline Fourier-Domain Optical Coherence Tomography. Zhang X; Loewen N; Tan O; Greenfield DS; Schuman JS; Varma R; Huang D; Am J Ophthalmol; 2016 Mar; 163():29-37. PubMed ID: 26627918 [TBL] [Abstract][Full Text] [Related]
20. Predictive Factors for the Rate of Visual Field Progression in the Advanced Imaging for Glaucoma Study. Zhang X; Parrish RK; Greenfield DS; Francis BA; Varma R; Schuman JS; Tan O; Huang D; Am J Ophthalmol; 2019 Jun; 202():62-71. PubMed ID: 30794787 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]