These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 22786951)

  • 1. Suppression of spikes during posttetanic hyperpolarization in auditory neurons: the role of temperature, I(h) currents, and the Na(+)-K(+)-ATPase pump.
    Kim JH; von Gersdorff H
    J Neurophysiol; 2012 Oct; 108(7):1924-32. PubMed ID: 22786951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SK Channels Regulate Resting Properties and Signaling Reliability of a Developing Fast-Spiking Neuron.
    Zhang Y; Huang H
    J Neurosci; 2017 Nov; 37(44):10738-10747. PubMed ID: 28982705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Posttetanic hyperpolarization produced by electrogenic Na(+)-K+ pump in lizard axons impaled near their motor terminals.
    Morita K; David G; Barrett JN; Barrett EF
    J Neurophysiol; 1993 Nov; 70(5):1874-84. PubMed ID: 8294960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noradrenaline increases high-frequency firing at the calyx of Held synapse during development by inhibiting glutamate release.
    Leão RM; Von Gersdorff H
    J Neurophysiol; 2002 May; 87(5):2297-306. PubMed ID: 11976369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of Kv channel expression and neuronal excitability in rat medial nucleus of the trapezoid body maintained in organotypic culture.
    Tong H; Steinert JR; Robinson SW; Chernova T; Read DJ; Oliver DL; Forsythe ID
    J Physiol; 2010 May; 588(Pt 9):1451-68. PubMed ID: 20211981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Presynaptic Ca2+ buffers control the strength of a fast post-tetanic hyperpolarization mediated by the alpha3 Na(+)/K(+)-ATPase.
    Kim JH; Sizov I; Dobretsov M; von Gersdorff H
    Nat Neurosci; 2007 Feb; 10(2):196-205. PubMed ID: 17220883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological properties of neurons in the mouse superior olive: membrane characteristics and postsynaptic responses studied in vitro.
    Wu SH; Kelly JB
    J Neurophysiol; 1991 Feb; 65(2):230-46. PubMed ID: 2016640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Central dysmyelination reduces the temporal fidelity of synaptic transmission and the reliability of postsynaptic firing during high-frequency stimulation.
    Kim SE; Turkington K; Kushmerick C; Kim JH
    J Neurophysiol; 2013 Oct; 110(7):1621-30. PubMed ID: 23843435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of neuronal hyperexcitability caused by partial inhibition of Na+-K+-ATPases in the rat CA1 hippocampal region.
    Vaillend C; Mason SE; Cuttle MF; Alger BE
    J Neurophysiol; 2002 Dec; 88(6):2963-78. PubMed ID: 12466422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperpolarization-activated cation current (Ih) in neurons of the medial nucleus of the trapezoid body: voltage-clamp analysis and enhancement by norepinephrine and cAMP suggest a modulatory mechanism in the auditory brain stem.
    Banks MI; Pearce RA; Smith PH
    J Neurophysiol; 1993 Oct; 70(4):1420-32. PubMed ID: 7506755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel role for MNTB neuron dendrites in regulating action potential amplitude and cell excitability during repetitive firing.
    Leão RN; Leão RM; da Costa LF; Rock Levinson S; Walmsley B
    Eur J Neurosci; 2008 Jun; 27(12):3095-108. PubMed ID: 18598256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo matching of postsynaptic excitability with spontaneous synaptic inputs during formation of the rat calyx of Held synapse.
    Sierksma MC; Tedja MS; Borst JG
    J Physiol; 2017 Jan; 595(1):207-231. PubMed ID: 27426483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The binaural auditory pathway: membrane currents limiting multiple action potential generation in the rat medial nucleus of the trapezoid body.
    Forsythe ID; Barnes-Davies M
    Proc Biol Sci; 1993 Feb; 251(1331):143-50. PubMed ID: 8096080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptic transmission at the calyx of Held under in vivo like activity levels.
    Hermann J; Pecka M; von Gersdorff H; Grothe B; Klug A
    J Neurophysiol; 2007 Aug; 98(2):807-20. PubMed ID: 17507501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperpolarization-activated (I) currents in auditory brainstem neurons of normal and congenitally deaf mice.
    Leao RN; Svahn K; Berntson A; Walmsley B
    Eur J Neurosci; 2005 Jul; 22(1):147-57. PubMed ID: 16029204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular Na(+) and metabolic modulation of Na/K pump and excitability in the rat suprachiasmatic nucleus neurons.
    Wang YC; Yang JJ; Huang RC
    J Neurophysiol; 2012 Oct; 108(7):2024-32. PubMed ID: 22773774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrogenic pump and a Ca(2+)- dependent K+ conductance contribute to a posttetanic hyperpolarization in lamprey sensory neurons.
    Parker D; Hill R; Grillner S
    J Neurophysiol; 1996 Jul; 76(1):540-53. PubMed ID: 8836242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms for signal transformation in lemniscal auditory thalamus.
    Tennigkeit F; Schwarz DW; Puil E
    J Neurophysiol; 1996 Dec; 76(6):3597-608. PubMed ID: 8985860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensory deprivation regulates the development of the hyperpolarization-activated current in auditory brainstem neurons.
    Hassfurth B; Magnusson AK; Grothe B; Koch U
    Eur J Neurosci; 2009 Oct; 30(7):1227-38. PubMed ID: 19788576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms and functional impact of Group I metabotropic glutamate receptor modulation of excitability in mouse MNTB neurons.
    Dos Santos E Alhadas É; Correa AMB; Naves LA; Kushmerick C
    Synapse; 2020 Mar; 74(3):e22137. PubMed ID: 31584700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.