These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 2278698)

  • 21. Efferent-mediated protection of the cochlear base from acoustic overexposure by low doses of lithium.
    Horner KC; Higueret D; Cazals Y
    Eur J Neurosci; 1998 Apr; 10(4):1524-7. PubMed ID: 9749806
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Temporary threshold shift modified by binaural acoustic stimulation.
    Cody AR; Johnstone BM
    Hear Res; 1982 Feb; 6(2):199-205. PubMed ID: 7061351
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cochlear mechanics: implications of electrophysiological and acoustical observations.
    Kim DO
    Hear Res; 1980 Jun; 2(3-4):297-317. PubMed ID: 7410234
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanisms involved in acoustic trauma: cochlear microphonic data.
    Legouix JP
    Rev Laryngol Otol Rhinol (Bord); 1984; 105(2 Suppl):193-8. PubMed ID: 6463441
    [No Abstract]   [Full Text] [Related]  

  • 25. Electrical stimulation of cochlear efferents at the round window reduces auditory desensitization in guinea pigs. I. Dependence on electrical stimulation parameters.
    Rajan R; Johnstone BM
    Hear Res; 1988 Oct; 36(1):53-73. PubMed ID: 3198521
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evidence that catecholamines are not the afferent transmitter in the cochlea.
    Klinke R; Evans EF
    Exp Brain Res; 1977 Jun; 28(3-4):315-24. PubMed ID: 195827
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Riluzole rescues cochlear sensory cells from acoustic trauma in the guinea-pig.
    Wang J; Dib M; Lenoir M; Vago P; Eybalin M; Hameg A; Pujol R; Puel JL
    Neuroscience; 2002; 111(3):635-48. PubMed ID: 12031350
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential effects of gentamicin on the distribution of cochlear function in albino and pigmented guinea pigs.
    Conlee JW; Bennett ML; Creel DJ
    Acta Otolaryngol; 1995 May; 115(3):367-74. PubMed ID: 7653256
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Average spectrum of cochlear activity: a possible synchronized firing, its olivo-cochlear feedback and alterations under anesthesia.
    Cazals Y; Huang ZW
    Hear Res; 1996 Nov; 101(1-2):81-92. PubMed ID: 8951435
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Corresponding effects of acoustic fatigue on the cochlear microphonic and the compound action potential.
    Pierson MG; Møller AR
    Hear Res; 1982 Jan; 6(1):61-82. PubMed ID: 7054136
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protection against noise trauma by pre-exposure to a low level acoustic stimulus.
    Canlon B; Borg E; Flock A
    Hear Res; 1988 Jul; 34(2):197-200. PubMed ID: 3170362
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of cochlear microphonic potentials from albino and pigmented guinea pigs.
    Nuttall AL
    Acta Otolaryngol; 1974; 78(3-4):187-91. PubMed ID: 4432742
    [No Abstract]   [Full Text] [Related]  

  • 33. Evidence for electrically evoked travelling waves in the guinea pig cochlea.
    Kirk DL; Yates GK
    Hear Res; 1994 Apr; 74(1-2):38-50. PubMed ID: 8040098
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of Acoustic Overstimulation on the Central Auditory System: An Functional Magnetic Resonance Imaging (fMRI) Study.
    Wolak T; Cieśla K; Rusiniak M; Piłka A; Lewandowska M; Pluta A; Skarżyński H; Skarżyński PH
    Med Sci Monit; 2016 Nov; 22():4623-4635. PubMed ID: 27893698
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of upper pontine transections on normal cochlear responses and on the protective effects of contralateral acoustic stimulation in barbiturate-anaesthetized normal-hearing guinea pigs.
    Rajan R
    Hear Res; 1990 Apr; 45(1-2):137-44. PubMed ID: 2345112
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Loud sound-induced changes in cochlear mechanics.
    Fridberger A; Zheng J; Parthasarathi A; Ren T; Nuttall A
    J Neurophysiol; 2002 Nov; 88(5):2341-8. PubMed ID: 12424275
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of intra-cochlear perfusion of salicylates on cochlear microphonic and other auditory responses in the guinea pig.
    Fitzgerald JJ; Robertson D; Johnstone BM
    Hear Res; 1993 May; 67(1-2):147-56. PubMed ID: 8340266
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recovery of eighth nerve action potential thresholds after exposure to short, intense pure tones: similarities with temporary threshold shift.
    Yates GK; Cody AR; Johnstone BM
    Hear Res; 1983 Dec; 12(3):305-22. PubMed ID: 6668255
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Noise and medial olivocochlear system in humans.
    Collet L; Morgon A; Veuillet E; Gartner M
    Acta Otolaryngol; 1991; 111(2):231-3. PubMed ID: 2068907
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Additivity of threshold elevations produced by disruption of outer hair cell function.
    Patuzzi R; Rajan R
    Hear Res; 1992 Jul; 60(2):165-77. PubMed ID: 1639727
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.