BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 22787007)

  • 1. New insights into ice growth and melting modifications by antifreeze proteins.
    Bar-Dolev M; Celik Y; Wettlaufer JS; Davies PL; Braslavsky I
    J R Soc Interface; 2012 Dec; 9(77):3249-59. PubMed ID: 22787007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ice-binding proteins that accumulate on different ice crystal planes produce distinct thermal hysteresis dynamics.
    Drori R; Celik Y; Davies PL; Braslavsky I
    J R Soc Interface; 2014 Sep; 11(98):20140526. PubMed ID: 25008081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superheating of ice crystals in antifreeze protein solutions.
    Celik Y; Graham LA; Mok YF; Bar M; Davies PL; Braslavsky I
    Proc Natl Acad Sci U S A; 2010 Mar; 107(12):5423-8. PubMed ID: 20215465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. When are antifreeze proteins in solution essential for ice growth inhibition?
    Drori R; Davies PL; Braslavsky I
    Langmuir; 2015 Jun; 31(21):5805-11. PubMed ID: 25946514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The basis for hyperactivity of antifreeze proteins.
    Scotter AJ; Marshall CB; Graham LA; Gilbert JA; Garnham CP; Davies PL
    Cryobiology; 2006 Oct; 53(2):229-39. PubMed ID: 16887111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Partitioning of fish and insect antifreeze proteins into ice suggests they bind with comparable affinity.
    Marshall CB; Tomczak MM; Gauthier SY; Kuiper MJ; Lankin C; Walker VK; Davies PL
    Biochemistry; 2004 Jan; 43(1):148-54. PubMed ID: 14705940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic experiments reveal that antifreeze proteins bound to ice crystals suffice to prevent their growth.
    Celik Y; Drori R; Pertaya-Braun N; Altan A; Barton T; Bar-Dolev M; Groisman A; Davies PL; Braslavsky I
    Proc Natl Acad Sci U S A; 2013 Jan; 110(4):1309-14. PubMed ID: 23300286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ice restructuring inhibition activities in antifreeze proteins with distinct differences in thermal hysteresis.
    Yu SO; Brown A; Middleton AJ; Tomczak MM; Walker VK; Davies PL
    Cryobiology; 2010 Dec; 61(3):327-34. PubMed ID: 20977900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antifreeze Proteins and Their Practical Utilization in Industry, Medicine, and Agriculture.
    Eskandari A; Leow TC; Rahman MBA; Oslan SN
    Biomolecules; 2020 Dec; 10(12):. PubMed ID: 33317024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intermediate activity of midge antifreeze protein is due to a tyrosine-rich ice-binding site and atypical ice plane affinity.
    Basu K; Wasserman SS; Jeronimo PS; Graham LA; Davies PL
    FEBS J; 2016 Apr; 283(8):1504-15. PubMed ID: 26896764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antifreeze proteins enable plants to survive in freezing conditions.
    Gupta R; Deswal R
    J Biosci; 2014 Dec; 39(5):931-44. PubMed ID: 25431421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Do antifreeze proteins generally possess the potential to promote ice growth?
    Cui S; Zhang W; Shao X; Cai W
    Phys Chem Chem Phys; 2022 Mar; 24(13):7901-7908. PubMed ID: 35311839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct visualization of spruce budworm antifreeze protein interacting with ice crystals: basal plane affinity confers hyperactivity.
    Pertaya N; Marshall CB; Celik Y; Davies PL; Braslavsky I
    Biophys J; 2008 Jul; 95(1):333-41. PubMed ID: 18339740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of an antifreeze protein from the polar diatom Fragilariopsis cylindrus and its relevance in sea ice.
    Bayer-Giraldi M; Weikusat I; Besir H; Dieckmann G
    Cryobiology; 2011 Dec; 63(3):210-9. PubMed ID: 21906587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antifreeze protein from freeze-tolerant grass has a beta-roll fold with an irregularly structured ice-binding site.
    Middleton AJ; Marshall CB; Faucher F; Bar-Dolev M; Braslavsky I; Campbell RL; Walker VK; Davies PL
    J Mol Biol; 2012 Mar; 416(5):713-24. PubMed ID: 22306740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hyperactive, Ca2+-dependent antifreeze protein in an Antarctic bacterium.
    Gilbert JA; Davies PL; Laybourn-Parry J
    FEMS Microbiol Lett; 2005 Apr; 245(1):67-72. PubMed ID: 15796981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A two-dimensional adsorption kinetic model for thermal hysteresis activity in antifreeze proteins.
    Li QZ; Yeh Y; Liu JJ; Feeney RE; Krishnan VV
    J Chem Phys; 2006 May; 124(20):204702. PubMed ID: 16774359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hyperactive antifreeze protein from an Antarctic sea ice bacterium Colwellia sp. has a compound ice-binding site without repetitive sequences.
    Hanada Y; Nishimiya Y; Miura A; Tsuda S; Kondo H
    FEBS J; 2014 Aug; 281(16):3576-90. PubMed ID: 24938370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyperactive antifreeze protein from fish contains multiple ice-binding sites.
    Graham LA; Marshall CB; Lin FH; Campbell RL; Davies PL
    Biochemistry; 2008 Feb; 47(7):2051-63. PubMed ID: 18225917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determining the ice-binding planes of antifreeze proteins by fluorescence-based ice plane affinity.
    Basu K; Garnham CP; Nishimiya Y; Tsuda S; Braslavsky I; Davies P
    J Vis Exp; 2014 Jan; (83):e51185. PubMed ID: 24457629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.