BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 22787027)

  • 1. Genetic change for earlier migration timing in a pink salmon population.
    Kovach RP; Gharrett AJ; Tallmon DA
    Proc Biol Sci; 2012 Sep; 279(1743):3870-8. PubMed ID: 22787027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal patterns in adult salmon migration timing across southeast Alaska.
    Kovach RP; Ellison SC; Pyare S; Tallmon DA
    Glob Chang Biol; 2015 May; 21(5):1821-33. PubMed ID: 25482609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fine-scale temporal adaptation within a salmonid population: mechanism and consequences.
    Gharrett AJ; Joyce J; Smoker WW
    Mol Ecol; 2013 Sep; 22(17):4457-69. PubMed ID: 23980763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal patterns of genetic variation in a salmon population undergoing rapid change in migration timing.
    Kovach RP; Gharrett AJ; Tallmon DA
    Evol Appl; 2013 Jul; 6(5):795-807. PubMed ID: 29387166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Candidate loci reveal genetic differentiation between temporally divergent migratory runs of Chinook salmon (Oncorhynchus tshawytscha).
    O'Malley KG; Camara MD; Banks MA
    Mol Ecol; 2007 Dec; 16(23):4930-41. PubMed ID: 17971087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clock polymorphism in Pacific salmon: evidence for variable selection along a latitudinal gradient.
    O'Malley KG; Ford MJ; Hard JJ
    Proc Biol Sci; 2010 Dec; 277(1701):3703-14. PubMed ID: 20610428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Earlier migration timing, decreasing phenotypic variation, and biocomplexity in multiple salmonid species.
    Kovach RP; Joyce JE; Echave JD; Lindberg MS; Tallmon DA
    PLoS One; 2013; 8(1):e53807. PubMed ID: 23326513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A latitudinal cline in the Chinook salmon (Oncorhynchus tshawytscha) Clock gene: evidence for selection on PolyQ length variants.
    O'Malley KG; Banks MA
    Proc Biol Sci; 2008 Dec; 275(1653):2813-21. PubMed ID: 18713722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Independent lineages in a common environment: the roles of determinism and contingency in shaping the migration timing of even- versus odd-year pink salmon over broad spatial and temporal scales.
    Oke KB; Cunningham CJ; Quinn TP; Hendry AP
    Ecol Lett; 2019 Oct; 22(10):1547-1556. PubMed ID: 31290586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fine-scale differentiation between sockeye salmon ecotypes and the effect of phenotype on straying.
    Lin J; Quinn TP; Hilborn R; Hauser L
    Heredity (Edinb); 2008 Oct; 101(4):341-50. PubMed ID: 18594560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic differentiation of Alaska Chinook salmon: the missing link for migratory studies.
    Templin WD; Seeb JE; Jasper JR; Barclay AW; Seeb LW
    Mol Ecol Resour; 2011 Mar; 11 Suppl 1():226-46. PubMed ID: 21429177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of Random Forest with population-based outlier analyses provides insight on the genomic basis and evolution of run timing in Chinook salmon (Oncorhynchus tshawytscha).
    Brieuc MS; Ono K; Drinan DP; Naish KA
    Mol Ecol; 2015 Jun; 24(11):2729-46. PubMed ID: 25913096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic variation across Chinook salmon populations reveals effects of a duplication on migration alleles and supports fine scale structure.
    Horn RL; Narum SR
    Mol Ecol; 2023 Jun; 32(11):2818-2834. PubMed ID: 36811385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time to evolve? Potential evolutionary responses of fraser river sockeye salmon to climate change and effects on persistence.
    Reed TE; Schindler DE; Hague MJ; Patterson DA; Meir E; Waples RS; Hinch SG
    PLoS One; 2011; 6(6):e20380. PubMed ID: 21738573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anthropogenic habitat alteration leads to rapid loss of adaptive variation and restoration potential in wild salmon populations.
    Thompson TQ; Bellinger MR; O'Rourke SM; Prince DJ; Stevenson AE; Rodrigues AT; Sloat MR; Speller CF; Yang DY; Butler VL; Banks MA; Miller MR
    Proc Natl Acad Sci U S A; 2019 Jan; 116(1):177-186. PubMed ID: 30514813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstruction of Pacific salmon abundance from riparian tree-ring growth.
    Drake DC; Naiman RJ
    Ecol Appl; 2007 Jul; 17(5):1523-42. PubMed ID: 17708226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in Size and Age of Chinook Salmon Oncorhynchus tshawytscha Returning to Alaska.
    Lewis B; Grant WS; Brenner RE; Hamazaki T
    PLoS One; 2015; 10(6):e0130184. PubMed ID: 26090990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directional selection by fisheries and the timing of sockeye salmon (Oncorhynchus nerka) migrations.
    Quinn TP; Hodgson S; Flynn L; Hilborn R; Rogers DE
    Ecol Appl; 2007 Apr; 17(3):731-9. PubMed ID: 17494392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single nucleotide polymorphisms unravel hierarchical divergence and signatures of selection among Alaskan sockeye salmon (Oncorhynchus nerka) populations.
    Gomez-Uchida D; Seeb JE; Smith MJ; Habicht C; Quinn TP; Seeb LW
    BMC Evol Biol; 2011 Feb; 11():48. PubMed ID: 21332997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using time series analysis to characterize evolutionary and plastic responses to environmental change: a case study of a shift toward earlier migration date in sockeye salmon.
    Crozier LG; Scheuerell MD; Zabel RW
    Am Nat; 2011 Dec; 178(6):755-73. PubMed ID: 22089870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.