These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 22787052)

  • 41. Sustained Splits of Attention within versus across Visual Hemifields Produce Distinct Spatial Gain Profiles.
    Walter S; Keitel C; Müller MM
    J Cogn Neurosci; 2016 Jan; 28(1):111-24. PubMed ID: 26401813
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Age-related changes in the attentional control of visual cortex: a selective problem in the left visual hemifield.
    Nagamatsu LS; Carolan P; Liu-Ambrose TY; Handy TC
    Neuropsychologia; 2011 Jun; 49(7):1670-8. PubMed ID: 21356222
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The time course of feature-selective attention inside and outside the focus of spatial attention.
    Andersen SK; Hillyard SA
    Proc Natl Acad Sci U S A; 2024 Apr; 121(16):e2309975121. PubMed ID: 38588433
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electrophysiological correlates of visual consciousness and selective attention.
    Koivisto M; Revonsuo A
    Neuroreport; 2007 May; 18(8):753-6. PubMed ID: 17471060
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Suppression of Unattended Features Is Independent of Task Relevance.
    Gundlach C; Forschack N; Müller MM
    Cereb Cortex; 2022 May; 32(11):2437-2446. PubMed ID: 34564718
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Selective attention to specific features within objects: behavioral and electrophysiological evidence.
    Nobre AC; Rao A; Chelazzi L
    J Cogn Neurosci; 2006 Apr; 18(4):539-61. PubMed ID: 16768359
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Early sensory gain control is dominated by obligatory and global feature-based attention in top-down shifts of combined spatial and feature-based attention.
    Gundlach C; Wehle S; Müller MM
    Cereb Cortex; 2023 Sep; 33(19):10286-10302. PubMed ID: 37536059
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The timing of feature-based attentional effects during object perception.
    Stojanoski B; Niemeier M
    Neuropsychologia; 2011 Oct; 49(12):3406-18. PubMed ID: 21889519
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Early visual selection in near and far space: an event-related potential study.
    Kasai T
    Neuroreport; 2008 Jun; 19(9):961-4. PubMed ID: 18521001
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The role of visual attention in multiple object tracking: evidence from ERPs.
    Doran MM; Hoffman JE
    Atten Percept Psychophys; 2010 Jan; 72(1):33-52. PubMed ID: 20802834
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Exploring the temporal dynamics of sustained and transient spatial attention using steady-state visual evoked potentials.
    Zhang D; Hong B; Gao S; Röder B
    Exp Brain Res; 2017 May; 235(5):1575-1591. PubMed ID: 28258437
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Attention alters feature space in motion processing.
    Zirnsak M; Hamker FH
    J Neurosci; 2010 May; 30(20):6882-90. PubMed ID: 20484630
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Neural mechanisms of spatial- and feature-based attention: a quantitative analysis.
    Stoppel CM; Boehler CN; Sabelhaus C; Heinze HJ; Hopf JM; Schoenfeld MA
    Brain Res; 2007 Nov; 1181():51-60. PubMed ID: 17961522
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Anticipatory and stimulus-evoked blood oxygenation level-dependent modulations related to spatial attention reflect a common additive signal.
    Sylvester CM; Shulman GL; Jack AI; Corbetta M
    J Neurosci; 2009 Aug; 29(34):10671-82. PubMed ID: 19710319
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Darkness beyond the light: attentional inhibition surrounding the classic spotlight.
    Slotnick SD; Hopfinger JB; Klein SA; Sutter EE
    Neuroreport; 2002 May; 13(6):773-8. PubMed ID: 11997685
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interactions between spatial attention and global/local feature selection: an ERP study.
    Han S; Liu W; Yund EW; Woods DL
    Neuroreport; 2000 Aug; 11(12):2753-8. PubMed ID: 10976957
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enhanced spatial focusing increases feature-based selection in unattended locations.
    Bartsch MV; Donohue SE; Strumpf H; Schoenfeld MA; Hopf JM
    Sci Rep; 2018 Oct; 8(1):16132. PubMed ID: 30382137
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Spatio-temporal dynamics of attentional selection stages during multiple object tracking.
    Merkel C; Hopf JM; Schoenfeld MA
    Neuroimage; 2017 Feb; 146():484-491. PubMed ID: 27810524
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Spatial attention boosts short-latency neural responses in human visual cortex.
    Mishra J; Martínez A; Schroeder CE; Hillyard SA
    Neuroimage; 2012 Jan; 59(2):1968-78. PubMed ID: 21983181
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Automatic spread of attentional response modulation along Gestalt criteria in primary visual cortex.
    Wannig A; Stanisor L; Roelfsema PR
    Nat Neurosci; 2011 Sep; 14(10):1243-4. PubMed ID: 21926984
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.