BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 22787087)

  • 21. LAMB3 promotes tumour progression through the AKT-FOXO3/4 axis and is transcriptionally regulated by the BRD2/acetylated ELK4 complex in colorectal cancer.
    Zhu Z; Song J; Guo Y; Huang Z; Chen X; Dang X; Huang Y; Wang Y; Ou W; Yang Y; Yu W; Liu CY; Cui L
    Oncogene; 2020 Jun; 39(24):4666-4680. PubMed ID: 32398865
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The expression of ELK transcription factors in adult DRG: Novel isoforms, antisense transcripts and upregulation by nerve damage.
    Kerr N; Pintzas A; Holmes F; Hobson SA; Pope R; Wallace M; Wasylyk C; Wasylyk B; Wynick D
    Mol Cell Neurosci; 2010 Jun; 44(2):165-77. PubMed ID: 20304071
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cyclin-dependent kinase 2 (CDK2) is a key mediator for EGF-induced cell transformation mediated through the ELK4/c-Fos signaling pathway.
    Peng C; Zeng W; Su J; Kuang Y; He Y; Zhao S; Zhang J; Ma W; Bode AM; Dong Z; Chen X
    Oncogene; 2016 Mar; 35(9):1170-9. PubMed ID: 26028036
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MKL1/2 and ELK4 co-regulate distinct serum response factor (SRF) transcription programs in macrophages.
    Xie L
    BMC Genomics; 2014 Apr; 15():301. PubMed ID: 24758171
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A fluorescence in situ hybridization screen for E26 transformation-specific aberrations: identification of DDX5-ETV4 fusion protein in prostate cancer.
    Han B; Mehra R; Dhanasekaran SM; Yu J; Menon A; Lonigro RJ; Wang X; Gong Y; Wang L; Shankar S; Laxman B; Shah RB; Varambally S; Palanisamy N; Tomlins SA; Kumar-Sinha C; Chinnaiyan AM
    Cancer Res; 2008 Sep; 68(18):7629-37. PubMed ID: 18794152
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer.
    Tomlins SA; Laxman B; Dhanasekaran SM; Helgeson BE; Cao X; Morris DS; Menon A; Jing X; Cao Q; Han B; Yu J; Wang L; Montie JE; Rubin MA; Pienta KJ; Roulston D; Shah RB; Varambally S; Mehra R; Chinnaiyan AM
    Nature; 2007 Aug; 448(7153):595-9. PubMed ID: 17671502
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep RNA sequencing analysis of readthrough gene fusions in human prostate adenocarcinoma and reference samples.
    Nacu S; Yuan W; Kan Z; Bhatt D; Rivers CS; Stinson J; Peters BA; Modrusan Z; Jung K; Seshagiri S; Wu TD
    BMC Med Genomics; 2011 Jan; 4():11. PubMed ID: 21261984
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Retention of Interstitial Genes between
    Murphy SJ; Kosari F; Karnes RJ; Nasir A; Johnson SH; Gaitatzes AG; Smadbeck JB; Rangel LJ; Vasmatzis G; Cheville JC
    Cancer Res; 2017 Nov; 77(22):6157-6167. PubMed ID: 29127096
    [No Abstract]   [Full Text] [Related]  

  • 29. Identification of chimeric TSNAX-DISC1 resulting from intergenic splicing in endometrial carcinoma through high-throughput RNA sequencing.
    Li N; Zheng J; Li H; Deng J; Hu M; Wu H; Li W; Li F; Lan X; Lu J; Zhou Y
    Carcinogenesis; 2014 Dec; 35(12):2687-97. PubMed ID: 25239642
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel 5' fusion partners of ETV1 and ETV4 in prostate cancer.
    Barros-Silva JD; Paulo P; Bakken AC; Cerveira N; Løvf M; Henrique R; Jerónimo C; Lothe RA; Skotheim RI; Teixeira MR
    Neoplasia; 2013 Jul; 15(7):720-6. PubMed ID: 23814484
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intergenically Spliced Chimeric RNAs in Cancer.
    Jia Y; Xie Z; Li H
    Trends Cancer; 2016 Sep; 2(9):475-484. PubMed ID: 28210711
    [TBL] [Abstract][Full Text] [Related]  

  • 32. TMPRSS2:ERG fusion by translocation or interstitial deletion is highly relevant in androgen-dependent prostate cancer, but is bypassed in late-stage androgen receptor-negative prostate cancer.
    Hermans KG; van Marion R; van Dekken H; Jenster G; van Weerden WM; Trapman J
    Cancer Res; 2006 Nov; 66(22):10658-63. PubMed ID: 17108102
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of TMPRSS2:ETV5 and SLC45A3:ETV5 gene fusions in prostate cancer.
    Helgeson BE; Tomlins SA; Shah N; Laxman B; Cao Q; Prensner JR; Cao X; Singla N; Montie JE; Varambally S; Mehra R; Chinnaiyan AM
    Cancer Res; 2008 Jan; 68(1):73-80. PubMed ID: 18172298
    [TBL] [Abstract][Full Text] [Related]  

  • 34. N-myc downstream regulated gene 1 (NDRG1) is fused to ERG in prostate cancer.
    Pflueger D; Rickman DS; Sboner A; Perner S; LaFargue CJ; Svensson MA; Moss BJ; Kitabayashi N; Pan Y; de la Taille A; Kuefer R; Tewari AK; Demichelis F; Chee MS; Gerstein MB; Rubin MA
    Neoplasia; 2009 Aug; 11(8):804-11. PubMed ID: 19649210
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RNA Splicing of the BHC80 Gene Contributes to Neuroendocrine Prostate Cancer Progression.
    Li Y; Xie N; Chen R; Lee AR; Lovnicki J; Morrison EA; Fazli L; Zhang Q; Musselman CA; Wang Y; Huang J; Gleave ME; Collins C; Dong X
    Eur Urol; 2019 Aug; 76(2):157-166. PubMed ID: 30910347
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An intronic splicing silencer causes skipping of the IIIb exon of fibroblast growth factor receptor 2 through involvement of polypyrimidine tract binding protein.
    Carstens RP; Wagner EJ; Garcia-Blanco MA
    Mol Cell Biol; 2000 Oct; 20(19):7388-400. PubMed ID: 10982855
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MicroRNA-3188 targets ETS-domain protein 4 and participates in RhoA/ROCK pathway to regulate the development of atherosclerosis.
    Li N; Chen J; Zhao J; Wang T
    Pharmazie; 2017 Nov; 72(11):687-693. PubMed ID: 29442044
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fusion transcript loci share many genomic features with non-fusion loci.
    Lai J; An J; Seim I; Walpole C; Hoffman A; Moya L; Srinivasan S; Perry-Keene JL; ; Wang C; Lehman ML; Nelson CC; Clements JA; Batra J
    BMC Genomics; 2015 Dec; 16():1021. PubMed ID: 26626734
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel Nine-Exon AR Transcripts (Exon 1/Exon 1b/Exons 2-8) in Normal and Cancerous Breast and Prostate Cells.
    Hu DG; McKinnon RA; Hulin JA; Mackenzie PI; Meech R
    Int J Mol Sci; 2016 Dec; 18(1):. PubMed ID: 28035996
    [TBL] [Abstract][Full Text] [Related]  

  • 40. miR-32 and its target SLC45A3 regulate the lipid metabolism of oligodendrocytes and myelin.
    Shin D; Howng SY; Ptáček LJ; Fu YH
    Neuroscience; 2012 Jun; 213():29-37. PubMed ID: 22521588
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.