BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 22787142)

  • 41. Raft trafficking of AB5 subunit bacterial toxins.
    Lencer WI; Saslowsky D
    Biochim Biophys Acta; 2005 Dec; 1746(3):314-21. PubMed ID: 16153723
    [TBL] [Abstract][Full Text] [Related]  

  • 42. N-terminal extension of the cholera toxin A1-chain causes rapid degradation after retrotranslocation from endoplasmic reticulum to cytosol.
    Wernick NL; De Luca H; Kam WR; Lencer WI
    J Biol Chem; 2010 Feb; 285(9):6145-52. PubMed ID: 20056601
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Unfolded cholera toxin is transferred to the ER membrane and released from protein disulfide isomerase upon oxidation by Ero1.
    Tsai B; Rapoport TA
    J Cell Biol; 2002 Oct; 159(2):207-16. PubMed ID: 12403808
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hydrophobicity engineering of cholera toxin A1 subunit in the strong adjuvant fusion protein CTA1-DD.
    Agren L; Norin M; Lycke N; Löwenadler B
    Protein Eng; 1999 Feb; 12(2):173-8. PubMed ID: 10195289
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Protein disulfide isomerase acts as a redox-dependent chaperone to unfold cholera toxin.
    Tsai B; Rodighiero C; Lencer WI; Rapoport TA
    Cell; 2001 Mar; 104(6):937-48. PubMed ID: 11290330
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Lipid Raft Isolation by Sucrose Gradient Centrifugation and Visualization of Raft-Located Proteins by Fluorescence Microscopy: The Use of Combined Techniques to Assess Fas/CD95 Location in Rafts During Apoptosis Triggering.
    Gajate C; Mollinedo F
    Methods Mol Biol; 2021; 2187():147-186. PubMed ID: 32770506
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Functions of cholera toxin B-subunit as a raft cross-linker.
    Day CA; Kenworthy AK
    Essays Biochem; 2015; 57():135-45. PubMed ID: 25658350
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Retrograde transport of cholera toxin into the ER of host cells.
    Lencer WI
    Int J Med Microbiol; 2004 Apr; 293(7-8):491-4. PubMed ID: 15149023
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Role of ubiquitination in retro-translocation of cholera toxin and escape of cytosolic degradation.
    Rodighiero C; Tsai B; Rapoport TA; Lencer WI
    EMBO Rep; 2002 Dec; 3(12):1222-7. PubMed ID: 12446567
    [TBL] [Abstract][Full Text] [Related]  

  • 50. How sphingolipids bind and shape proteins: molecular basis of lipid-protein interactions in lipid shells, rafts and related biomembrane domains.
    Fantini J
    Cell Mol Life Sci; 2003 Jun; 60(6):1027-32. PubMed ID: 12866532
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Therapeutic Uses of Bacterial Subunit Toxins.
    Lingwood C
    Toxins (Basel); 2021 May; 13(6):. PubMed ID: 34073185
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A biochemical method for tracking cholera toxin transport from plasma membrane to Golgi and endoplasmic reticulum.
    De Luca HE; Lencer WI
    Methods Mol Biol; 2006; 341():127-39. PubMed ID: 16799195
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Thermal Unfolding of the Pertussis Toxin S1 Subunit Facilitates Toxin Translocation to the Cytosol by the Mechanism of Endoplasmic Reticulum-Associated Degradation.
    Banerjee T; Cilenti L; Taylor M; Showman A; Tatulian SA; Teter K
    Infect Immun; 2016 Dec; 84(12):3388-3398. PubMed ID: 27647866
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Toxin instability and its role in toxin translocation from the endoplasmic reticulum to the cytosol.
    Teter K
    Biomolecules; 2013 Dec; 3(4):997-1029. PubMed ID: 24970201
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microbes and microbial Toxins: paradigms for microbial-mucosal toxins. V. Cholera: invasion of the intestinal epithelial barrier by a stably folded protein toxin.
    Lencer WI
    Am J Physiol Gastrointest Liver Physiol; 2001 May; 280(5):G781-6. PubMed ID: 11292584
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Inhibition of Cholera Toxin and Other AB Toxins by Polyphenolic Compounds.
    Cherubin P; Garcia MC; Curtis D; Britt CB; Craft JW; Burress H; Berndt C; Reddy S; Guyette J; Zheng T; Huo Q; Quiñones B; Briggs JM; Teter K
    PLoS One; 2016; 11(11):e0166477. PubMed ID: 27829022
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lipid sorting by ceramide structure from plasma membrane to ER for the cholera toxin receptor ganglioside GM1.
    Chinnapen DJ; Hsieh WT; te Welscher YM; Saslowsky DE; Kaoutzani L; Brandsma E; D'Auria L; Park H; Wagner JS; Drake KR; Kang M; Benjamin T; Ullman MD; Costello CE; Kenworthy AK; Baumgart T; Massol RH; Lencer WI
    Dev Cell; 2012 Sep; 23(3):573-86. PubMed ID: 22975326
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Membrane lipid rafts are necessary for the maintenance of the (alpha)7 nicotinic acetylcholine receptor in somatic spines of ciliary neurons.
    Brusés JL; Chauvet N; Rutishauser U
    J Neurosci; 2001 Jan; 21(2):504-12. PubMed ID: 11160430
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genetically engineered nontoxic vaccine adjuvant that combines B cell targeting with immunomodulation by cholera toxin A1 subunit.
    Agren LC; Ekman L; Löwenadler B; Lycke NY
    J Immunol; 1997 Apr; 158(8):3936-46. PubMed ID: 9103464
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Proline Isomerization as a Key Determinant for Hsp90-Toxin Interactions.
    Kellner A; Cherubin P; Harper JK; Teter K
    Front Cell Infect Microbiol; 2021; 11():771653. PubMed ID: 34746036
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.