BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 22787159)

  • 1. The Werner syndrome protein promotes CAG/CTG repeat stability by resolving large (CAG)(n)/(CTG)(n) hairpins.
    Chan NL; Hou C; Zhang T; Yuan F; Machwe A; Huang J; Orren DK; Gu L; Li GM
    J Biol Chem; 2012 Aug; 287(36):30151-6. PubMed ID: 22787159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MutSβ promotes trinucleotide repeat expansion by recruiting DNA polymerase β to nascent (CAG)n or (CTG)n hairpins for error-prone DNA synthesis.
    Guo J; Gu L; Leffak M; Li GM
    Cell Res; 2016 Jul; 26(7):775-86. PubMed ID: 27255792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro repair of DNA hairpins containing various numbers of CAG/CTG trinucleotide repeats.
    Zhang T; Huang J; Gu L; Li GM
    DNA Repair (Amst); 2012 Feb; 11(2):201-9. PubMed ID: 22041023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coordinated processing of 3' slipped (CAG)n/(CTG)n hairpins by DNA polymerases β and δ preferentially induces repeat expansions.
    Chan NL; Guo J; Zhang T; Mao G; Hou C; Yuan F; Huang J; Zhang Y; Wu J; Gu L; Li GM
    J Biol Chem; 2013 May; 288(21):15015-22. PubMed ID: 23585564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role of XPG in Processing (CAG)n/(CTG)n DNA Hairpins.
    Hou C; Zhang T; Tian L; Huang J; Gu L; Li GM
    Cell Biosci; 2011 Mar; 1(1):11. PubMed ID: 21711735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incision-dependent and error-free repair of (CAG)(n)/(CTG)(n) hairpins in human cell extracts.
    Hou C; Chan NL; Gu L; Li GM
    Nat Struct Mol Biol; 2009 Aug; 16(8):869-75. PubMed ID: 19597480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions between the Werner syndrome helicase and DNA polymerase delta specifically facilitate copying of tetraplex and hairpin structures of the d(CGG)n trinucleotide repeat sequence.
    Kamath-Loeb AS; Loeb LA; Johansson E; Burgers PM; Fry M
    J Biol Chem; 2001 May; 276(19):16439-46. PubMed ID: 11279038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear DNA helicase II (RNA helicase A) interacts with Werner syndrome helicase and stimulates its exonuclease activity.
    Friedemann J; Grosse F; Zhang S
    J Biol Chem; 2005 Sep; 280(35):31303-13. PubMed ID: 15995249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cooperation of DNA-PKcs and WRN helicase in the maintenance of telomeric D-loops.
    Kusumoto-Matsuo R; Opresko PL; Ramsden D; Tahara H; Bohr VA
    Aging (Albany NY); 2010 May; 2(5):274-84. PubMed ID: 20519774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Werner protein cooperates with the XRCC4-DNA ligase IV complex in end-processing.
    Kusumoto R; Dawut L; Marchetti C; Wan Lee J; Vindigni A; Ramsden D; Bohr VA
    Biochemistry; 2008 Jul; 47(28):7548-56. PubMed ID: 18558713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competition between the DNA unwinding and strand pairing activities of the Werner and Bloom syndrome proteins.
    Machwe A; Lozada EM; Xiao L; Orren DK
    BMC Mol Biol; 2006 Jan; 7():1. PubMed ID: 16412221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Werner Syndrome Helicase Coordinates Sequential Strand Displacement and FEN1-Mediated Flap Cleavage during Polymerase δ Elongation.
    Li B; Reddy S; Comai L
    Mol Cell Biol; 2017 Feb; 37(3):. PubMed ID: 27849570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential requirement of Srs2 helicase and Rad51 displacement activities in replication of hairpin-forming CAG/CTG repeats.
    Nguyen JHG; Viterbo D; Anand RP; Verra L; Sloan L; Richard GF; Freudenreich CH
    Nucleic Acids Res; 2017 May; 45(8):4519-4531. PubMed ID: 28175398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of helicase activity by a small molecule impairs Werner syndrome helicase (WRN) function in the cellular response to DNA damage or replication stress.
    Aggarwal M; Sommers JA; Shoemaker RH; Brosh RM
    Proc Natl Acad Sci U S A; 2011 Jan; 108(4):1525-30. PubMed ID: 21220316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA structure and the Werner protein modulate human DNA polymerase delta-dependent replication dynamics within the common fragile site FRA16D.
    Shah SN; Opresko PL; Meng X; Lee MY; Eckert KA
    Nucleic Acids Res; 2010 Mar; 38(4):1149-62. PubMed ID: 19969545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oligodeoxynucleotide binding to (CTG) · (CAG) microsatellite repeats inhibits replication fork stalling, hairpin formation, and genome instability.
    Liu G; Chen X; Leffak M
    Mol Cell Biol; 2013 Feb; 33(3):571-81. PubMed ID: 23166299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Replication protein A stimulates the Werner syndrome protein branch migration activity.
    Sowd G; Wang H; Pretto D; Chazin WJ; Opresko PL
    J Biol Chem; 2009 Dec; 284(50):34682-91. PubMed ID: 19812417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA polymerase θ promotes CAG•CTG repeat expansions in Huntington's disease via insertion sequences of its catalytic domain.
    Chan KY; Li X; Ortega J; Gu L; Li GM
    J Biol Chem; 2021 Oct; 297(4):101144. PubMed ID: 34473992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA binding residues in the RQC domain of Werner protein are critical for its catalytic activities.
    Tadokoro T; Kulikowicz T; Dawut L; Croteau DL; Bohr VA
    Aging (Albany NY); 2012 Jun; 4(6):417-29. PubMed ID: 22713343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Werner syndrome exonuclease facilitates DNA degradation and high fidelity DNA polymerization by human DNA polymerase δ.
    Kamath-Loeb AS; Shen JC; Schmitt MW; Loeb LA
    J Biol Chem; 2012 Apr; 287(15):12480-90. PubMed ID: 22351772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.