BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 227872)

  • 1. Production of superoxide and hydrogen peroxide by an NADH-oxidase in guinea pig polymorphonuclear leukocytes. Modulation by nucleotides and divalent cations.
    Badwey JA; Karnovsky ML
    J Biol Chem; 1979 Nov; 254(22):11530-7. PubMed ID: 227872
    [No Abstract]   [Full Text] [Related]  

  • 2. Anthracycline antibiotic-stimulated superoxide, hydrogen peroxide, and hydroxyl radical production by NADH dehydrogenase.
    Doroshow JH
    Cancer Res; 1983 Oct; 43(10):4543-51. PubMed ID: 6309369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduction of oxygen by NADH/NADH dehydrogenase in the presence of adriamycin.
    Thornalley PJ; Bannister WH; Bannister JV
    Free Radic Res Commun; 1986; 2(3):163-71. PubMed ID: 2850270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic studies on the H2O2(O2-)-forming enzyme in guinea pig leukocytes.
    Kakinuma K; Kaneda M
    FEBS Lett; 1980 Feb; 111(1):90-4. PubMed ID: 6244185
    [No Abstract]   [Full Text] [Related]  

  • 5. Essential requirement of magnesium ion for optimal activity of the NADPH oxidase of guinea pig polymorphonuclear leukocytes.
    Yamaguchi T; Kaneda M; Kakinuma K
    Biochem Biophys Res Commun; 1983 Aug; 115(1):261-7. PubMed ID: 6311205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active oxygen species and the functions of phagocytic leukocytes.
    Badwey JA; Karnovsky ML
    Annu Rev Biochem; 1980; 49():695-726. PubMed ID: 6250449
    [No Abstract]   [Full Text] [Related]  

  • 7. The alteration of superoxide dismutase, catalase, glutathione peroxidase, and NAD(P)H cytochrome c reductase in guinea pig polymorphonuclear leukocytes and alveolar macrophages during hyperoxia.
    Rister M; Baehner RL
    J Clin Invest; 1976 Nov; 58(5):1174-84. PubMed ID: 825533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial NADH dehydrogenase-catalyzed oxygen radical production by adriamycin, and the relative inactivity of 5-iminodaunorubicin.
    Davies KJ; Doroshow JH; Hochstein P
    FEBS Lett; 1983 Mar; 153(1):227-30. PubMed ID: 6298008
    [No Abstract]   [Full Text] [Related]  

  • 9. Interrelationship between oxygen consumption, superoxide anion and hydrogen peroxide formation in phagocytosing guinea pig polymorphonuclear leucocytes.
    Dri P; Bellavite P; Berton G; Rossi F
    Mol Cell Biochem; 1979 Jan; 23(2):109-22. PubMed ID: 220519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of superoxide anions and hydrogen peroxide by polymorphonuclear leukocytes stimulated with cytochalasin.
    Minakami S; Nabi ZF; Tatscheck B; Takeshige K
    Adv Exp Med Biol; 1982; 141():361-70. PubMed ID: 6283830
    [No Abstract]   [Full Text] [Related]  

  • 11. Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria.
    Cadenas E; Boveris A; Ragan CI; Stoppani AO
    Arch Biochem Biophys; 1977 Apr; 180(2):248-57. PubMed ID: 195520
    [No Abstract]   [Full Text] [Related]  

  • 12. Superoxide anion production by adriamycinol from cardiac sarcosomes and by mitochondrial NADH dehydrogenase.
    Gervasi PG; Agrillo MR; Citti L; Danesi R; Del Tacca M
    Anticancer Res; 1986; 6(5):1231-5. PubMed ID: 3026233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen peroxide formation of polymorphonuclear leukocytes stimulated with cytochalasin D.
    Nabi ZF; Takeshige K; Hatae T; Minakami S
    Exp Cell Res; 1979 Dec; 124(2):293-300. PubMed ID: 228953
    [No Abstract]   [Full Text] [Related]  

  • 14. Stabilizing effect of glutaraldehyde on the respiratory burst NADPH oxidase of guinea pig polymorphonuclear leukocytes.
    Sakane F; Takahashi K; Takayama H; Koyama J
    J Biochem; 1987 Aug; 102(2):247-53. PubMed ID: 2822683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cooperation of cytochalasin D and anti-microtubular agents in stimulating superoxide anion production in polymorphonuclear leukocytes.
    Okamura N; Hanakura K; Kodakari M; Ishibashi S
    J Biochem; 1980 Jul; 88(1):139-44. PubMed ID: 6251033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separation of three menadione-dependent, O2--generating, pyridine nucleotide-oxidizing enzymes in guinea pig polymorphonuclear leukocytes.
    Sakane F; Takahashi K; Koyama J
    J Biochem; 1983 Sep; 94(3):931-6. PubMed ID: 6315693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial sites of hydrogen peroxide production in reperfused rat kidney cortex.
    González-Flecha B; Boveris A
    Biochim Biophys Acta; 1995 Apr; 1243(3):361-6. PubMed ID: 7727510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NADPH oxidase of neutrophils forms superoxide anion but does not reduce cytochrome c and dichlorophenolindophenol.
    Bellavite P; della Bianca V; Serra MC; Papini E; Rossi F
    FEBS Lett; 1984 May; 170(1):157-61. PubMed ID: 6327373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria.
    Turrens JF; Boveris A
    Biochem J; 1980 Nov; 191(2):421-7. PubMed ID: 6263247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superoxide production by an unusual aldehyde oxidase in guinea pig granulocytes. Characterization and cytochemical localization.
    Badwey JA; Robinson JM; Karnovsky MJ; Karnovsky ML
    J Biol Chem; 1981 Apr; 256(7):3479-86. PubMed ID: 6259169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.