These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 227872)

  • 21. The generation of hydroxyl radicals following superoxide production by neutrophil NADPH oxidase.
    Bannister JV; Bellavite P; Davoli A; Thornalley PJ; Rossi F
    FEBS Lett; 1982 Dec; 150(2):300-2. PubMed ID: 6297975
    [No Abstract]   [Full Text] [Related]  

  • 22. Superoxide anion production by doxorubicin analogs in heart sarcosomes and by mitochondrial NADH dehydrogenase.
    Gervasi PG; Agrillo MR; Lippi A; Bernardini N; Danesi R; Del Tacca M
    Res Commun Chem Pathol Pharmacol; 1990 Jan; 67(1):101-15. PubMed ID: 2158133
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ca2+ stimulation of the external NADH dehydrogenase in Jerusalem artichoke (Helianthus tuberosum) mitochondria.
    Moore AL; Akerman KE
    Biochem Biophys Res Commun; 1982 Nov; 109(2):513-7. PubMed ID: 7181932
    [No Abstract]   [Full Text] [Related]  

  • 24. Comparative study on the stimulation of superoxide production in guinea-pig eosinophils by the calcium ionophore A23187.
    Yamashita T; Someya A
    Biochim Biophys Acta; 1987 Mar; 927(3):359-65. PubMed ID: 3028495
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of maleimide derivatives on superoxide-generating system of guinea-pig neutrophils stimulated by different soluble stimuli.
    Yamashita T; Someya A; Tsuzawa-Kido Y
    Eur J Biochem; 1984 Nov; 145(1):71-6. PubMed ID: 6092085
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of phenobarbitone on urinary 6 beta-hydroxycortisol excretion and hepatic enzyme activity in the guinea-pig.
    Park BK; Challiner MR; Newby S
    J Steroid Biochem; 1983 Apr; 18(4):453-7. PubMed ID: 6834829
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simple and rapid method for the diagnosis of chronic granulomatous disease, measuring hydrogen peroxide and superoxide anions released from leukocytes in whole blood.
    Takeshige K; Matsumoto T; Shibata R; Minakami S
    Clin Chim Acta; 1979 Mar; 92(3):329-35. PubMed ID: 219969
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibitory effect of di-isopropyl fluorophosphate on activation of an O-2-forming enzyme of polymorphonuclear leukocytes with C3b-zymosan.
    Yukishige K; Tamoto K; Koyama J
    FEBS Lett; 1981 Feb; 124(1):19-22. PubMed ID: 6260531
    [No Abstract]   [Full Text] [Related]  

  • 29. Apparent Km of leukocyte O2 and H2O2 forming enzyme for oxygen.
    Kakinuma K; Kaneda M
    Adv Exp Med Biol; 1982; 141():351-60. PubMed ID: 6283829
    [No Abstract]   [Full Text] [Related]  

  • 30. Kinetics of superoxide formation by respiratory chain NADH- dehydrogenase of bovine heart mitochondria.
    Kang D; Narabayashi H; Sata T; Takeshige K
    J Biochem; 1983 Oct; 94(4):1301-6. PubMed ID: 6317663
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reactions of myeloperoxidase with superoxide and hydrogen peroxide: significance for its function in the neutrophil.
    Winterbourn CC; Kettle AJ
    Basic Life Sci; 1988; 49():823-7. PubMed ID: 2855005
    [No Abstract]   [Full Text] [Related]  

  • 32. Possible involvement of proteases in superoxide production by human polymorphonuclear leukocytes.
    Kitagawa S; Takaku F; Sakamoto S
    FEBS Lett; 1979 Mar; 99(2):275-8. PubMed ID: 218845
    [No Abstract]   [Full Text] [Related]  

  • 33. Methylene blue competes with paraquat for reduction by flavo-enzymes resulting in decreased superoxide production in the presence of heme proteins.
    Kelner MJ; Bagnell R; Hale B; Alexander NM
    Arch Biochem Biophys; 1988 May; 262(2):422-6. PubMed ID: 2835006
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Superoxide anion and hydrogen peroxide production by chemically elicited peritoneal macrophages--induction by multiple nonphagocytic stimuli.
    Pick E; Keisari Y
    Cell Immunol; 1981 Apr; 59(2):301-18. PubMed ID: 6269759
    [No Abstract]   [Full Text] [Related]  

  • 35. Differences in oxygen metabolism of phagocytosing monocytes and neutrophils.
    Reiss M; Roos D
    J Clin Invest; 1978 Feb; 61(2):480-8. PubMed ID: 202614
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Purification and characterization of a membrane-bound NADPH-cytochrome c reductase capable of catalyzing menadione-dependent O2- formation in guinea pig polymorphonuclear leukocytes.
    Sakane F; Takahashi K; Koyama J
    J Biochem; 1984 Sep; 96(3):671-8. PubMed ID: 6094521
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Generation of superoxide anion as a source of hydrogen peroxide in a reconstituted monooxygenase system.
    Kuthan H; Tsuji H; Graf H; Ullrich V
    FEBS Lett; 1978 Jul; 91(2):343-5. PubMed ID: 210047
    [No Abstract]   [Full Text] [Related]  

  • 38. Evidence that phagocytosing chicken polymorphonuclear leukocytes generate hydrogen peroxide and superoxide anion.
    Dri P; Bellavite P; Cramer R; Bisiacchi B; Cian F; Patriarca P
    Adv Exp Med Biol; 1979; 121(A):111-21. PubMed ID: 44810
    [No Abstract]   [Full Text] [Related]  

  • 39. Activation of guinea-pig and bovine neutrophil NADPH oxidase by N,N'-dicyclohexylcarbodiimide.
    Aviram A; Aviram I
    Biochim Biophys Acta; 1985 Feb; 844(2):224-32. PubMed ID: 2982425
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence for bactericidal activity of polymorphonuclear leukocytes without phagocytosis.
    Okamura N; Ishibashi S; Takano T
    J Biochem; 1979 Aug; 86(2):469-75. PubMed ID: 225308
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.