These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 22787274)
1. System response of metabolic networks in Chlamydomonas reinhardtii to total available ammonium. Lee DY; Park JJ; Barupal DK; Fiehn O Mol Cell Proteomics; 2012 Oct; 11(10):973-88. PubMed ID: 22787274 [TBL] [Abstract][Full Text] [Related]
2. Cadmium response and redoxin targets in Chlamydomonas reinhardtii: a proteomic approach. Gillet S; Decottignies P; Chardonnet S; Le Maréchal P Photosynth Res; 2006 Sep; 89(2-3):201-11. PubMed ID: 17103236 [TBL] [Abstract][Full Text] [Related]
3. Comparative Shotgun Proteomic Analysis of Wastewater-Cultured Microalgae: Nitrogen Sensing and Carbon Fixation for Growth and Nutrient Removal in Chlamydomonas reinhardtii. Patel AK; Huang EL; Low-Décarie E; Lefsrud MG J Proteome Res; 2015 Aug; 14(8):3051-67. PubMed ID: 25997359 [TBL] [Abstract][Full Text] [Related]
4. Profiling Chlamydomonas metabolism under dark, anoxic H2-producing conditions using a combined proteomic, transcriptomic, and metabolomic approach. Subramanian V; Dubini A; Astling DP; Laurens LM; Old WM; Grossman AR; Posewitz MC; Seibert M J Proteome Res; 2014 Dec; 13(12):5431-51. PubMed ID: 25333711 [TBL] [Abstract][Full Text] [Related]
5. Plasticity of the mitoproteome to nitrogen sources (nitrate and ammonium) in Chlamydomonas reinhardtii: the logic of Aox1 gene localization. Gérin S; Mathy G; Blomme A; Franck F; Sluse FE Biochim Biophys Acta; 2010; 1797(6-7):994-1003. PubMed ID: 20211595 [TBL] [Abstract][Full Text] [Related]
6. The response of Chlamydomonas reinhardtii to nitrogen deprivation: a systems biology analysis. Park JJ; Wang H; Gargouri M; Deshpande RR; Skepper JN; Holguin FO; Juergens MT; Shachar-Hill Y; Hicks LM; Gang DR Plant J; 2015 Feb; 81(4):611-24. PubMed ID: 25515814 [TBL] [Abstract][Full Text] [Related]
7. A role for glucose-6-phosphate dehydrogenase in short- and long-term regulation of photosynthetic and respiratory carbon and nitrogen metabolism in nitrogen-limited Chlamydomonas reinhardtii. Huppe HC; Turpin DH Biochem Soc Trans; 1996 Aug; 24(3):767-70. PubMed ID: 8878844 [No Abstract] [Full Text] [Related]
8. Metabolic acclimation to excess light intensity in Chlamydomonas reinhardtii. Davis MC; Fiehn O; Durnford DG Plant Cell Environ; 2013 Jul; 36(7):1391-405. PubMed ID: 23346954 [TBL] [Abstract][Full Text] [Related]
9. Increased urea availability promotes adjustments in C/N metabolism and lipid content without impacting growth in Chlamydomonas reinhardtii. Batista AD; Rosa RM; Machado M; Magalhães AS; Shalaguti BA; Gomes PF; Covell L; Vaz MGMV; Araújo WL; Nunes-Nesi A Metabolomics; 2019 Feb; 15(3):31. PubMed ID: 30830512 [TBL] [Abstract][Full Text] [Related]
10. Integrated quantitative analysis of nitrogen stress response in Chlamydomonas reinhardtii using metabolite and protein profiling. Wase N; Black PN; Stanley BA; DiRusso CC J Proteome Res; 2014 Mar; 13(3):1373-96. PubMed ID: 24528286 [TBL] [Abstract][Full Text] [Related]
11. Amino acid utilization by Chlamydomonas reinhardtii: specific study of histidine. Hellio C; Veron B; Le Gal Y Plant Physiol Biochem; 2004 Mar; 42(3):257-64. PubMed ID: 15051050 [TBL] [Abstract][Full Text] [Related]
12. Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Msanne J; Xu D; Konda AR; Casas-Mollano JA; Awada T; Cahoon EB; Cerutti H Phytochemistry; 2012 Mar; 75():50-9. PubMed ID: 22226037 [TBL] [Abstract][Full Text] [Related]
13. Target of Rapamycin Inhibition in Mubeen U; Jüppner J; Alpers J; Hincha DK; Giavalisco P Plant Cell; 2018 Oct; 30(10):2240-2254. PubMed ID: 30228127 [TBL] [Abstract][Full Text] [Related]
14. Isolation and characterization of a mutant defective in triacylglycerol accumulation in nitrogen-starved Chlamydomonas reinhardtii. Hung CH; Kanehara K; Nakamura Y Biochim Biophys Acta; 2016 Sep; 1861(9 Pt B):1282-1293. PubMed ID: 27060488 [TBL] [Abstract][Full Text] [Related]
15. New thioredoxin targets in the unicellular photosynthetic eukaryote Chlamydomonas reinhardtii. Lemaire SD; Guillon B; Le Maréchal P; Keryer E; Miginiac-Maslow M; Decottignies P Proc Natl Acad Sci U S A; 2004 May; 101(19):7475-80. PubMed ID: 15123830 [TBL] [Abstract][Full Text] [Related]
16. The target of rapamycin kinase affects biomass accumulation and cell cycle progression by altering carbon/nitrogen balance in synchronized Chlamydomonas reinhardtii cells. Jüppner J; Mubeen U; Leisse A; Caldana C; Wiszniewski A; Steinhauser D; Giavalisco P Plant J; 2018 Jan; 93(2):355-376. PubMed ID: 29172247 [TBL] [Abstract][Full Text] [Related]
17. [Influence of methanol on the content of NAD(P)H, free amino acids and protein in the cells of Chlamydomonas reinhartdii]. Stepanov SS; Zolotar'ova OK Ukr Biokhim Zh (1999); 2013; 85(4):82-9. PubMed ID: 24319976 [TBL] [Abstract][Full Text] [Related]
18. Metabolic and photosynthetic consequences of blocking starch biosynthesis in the green alga Chlamydomonas reinhardtii sta6 mutant. Krishnan A; Kumaraswamy GK; Vinyard DJ; Gu H; Ananyev G; Posewitz MC; Dismukes GC Plant J; 2015 Mar; 81(6):947-60. PubMed ID: 25645872 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of nitrogen and photosynthetic carbon assimilation of maize seedlings by exposure to a combination of salt stress and potassium-deficient stress. Qu C; Liu C; Ze Y; Gong X; Hong M; Wang L; Hong F Biol Trace Elem Res; 2011 Dec; 144(1-3):1159-74. PubMed ID: 21455705 [TBL] [Abstract][Full Text] [Related]
20. Highly Time-Resolved Metabolic Reprogramming toward Differential Levels of Phosphate in Jang CH; Lee G; Park YC; Kim KH; Lee DY J Microbiol Biotechnol; 2017 Jun; 27(6):1150-1156. PubMed ID: 28372038 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]