These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 22788531)

  • 1. Combined proteomic and in silico approaches to decipher post-meiotic male genome reprogramming in mice.
    Rousseaux S; Khochbin S
    Syst Biol Reprod Med; 2012 Aug; 58(4):191-6. PubMed ID: 22788531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Spermiogenesis: histone acetylation triggers male genome reprogramming].
    Rousseaux S; Gaucher J; Thevenon J; Caron C; Vitte AL; Curtet S; Derobertis C; Faure AK; Levy R; Aknin-Seifer I; Ravel C; Siffroi JP; Mc Elreavey K; Lejeune H; Jimenez C; Hennebicq S; Khochbin S
    Gynecol Obstet Fertil; 2009 Jun; 37(6):519-22. PubMed ID: 19447664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic strategy for the identification of critical actors in reorganization of the post-meiotic male genome.
    Govin J; Gaucher J; Ferro M; Debernardi A; Garin J; Khochbin S; Rousseaux S
    Mol Hum Reprod; 2012 Jan; 18(1):1-13. PubMed ID: 21971310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular models for post-meiotic male genome reprogramming.
    Rousseaux S; Boussouar F; Gaucher J; Reynoird N; Montellier E; Curtet S; Vitte AL; Khochbin S
    Syst Biol Reprod Med; 2011 Feb; 57(1-2):50-3. PubMed ID: 21208144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Establishment of male-specific epigenetic information.
    Rousseaux S; Caron C; Govin J; Lestrat C; Faure AK; Khochbin S
    Gene; 2005 Jan; 345(2):139-53. PubMed ID: 15716030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spermatogenesis in mammals: proteomic insights.
    Chocu S; Calvel P; Rolland AD; Pineau C
    Syst Biol Reprod Med; 2012 Aug; 58(4):179-90. PubMed ID: 22788530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [A novel key element in post-meiotic male genome reprogramming].
    Rousseaux S; Petosa C; Müller CW; Khochbin S
    Med Sci (Paris); 2010 Feb; 26(2):130-2. PubMed ID: 20188037
    [No Abstract]   [Full Text] [Related]  

  • 8. [Cross-fire over the nucleosome: molecular basis of post-meiotic male haploid genome compaction].
    Montellier E; Rousseaux S; Khochbin S
    Med Sci (Paris); 2012 May; 28(5):485-9. PubMed ID: 22643001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A haploid affair: core histone transitions during spermatogenesis.
    Lewis JD; Abbott DW; Ausió J
    Biochem Cell Biol; 2003 Jun; 81(3):131-40. PubMed ID: 12897846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcription in haploid male germ cells.
    Dadoune JP; Siffroi JP; Alfonsi MF
    Int Rev Cytol; 2004; 237():1-56. PubMed ID: 15380665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MEIG1 localizes to the nucleus and binds to meiotic chromosomes of spermatocytes as they initiate meiosis.
    Steiner R; Ever L; Don J
    Dev Biol; 1999 Dec; 216(2):635-45. PubMed ID: 10642798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromatin modifications in the germinal vesicle (GV) of mammalian oocytes.
    De La Fuente R
    Dev Biol; 2006 Apr; 292(1):1-12. PubMed ID: 16466710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The application of proteomic approaches to the study of mammalian spermatogenesis and sperm function.
    Macleod G; Varmuza S
    FEBS J; 2013 Nov; 280(22):5635-51. PubMed ID: 23902417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of PACH1, a nuclear factor implicated in the transcriptional regulation of meiotic and early haploid stages of spermatogenesis.
    Liu F; Kondova I; Kilpatrick DL
    Mol Reprod Dev; 2000 Nov; 57(3):224-31. PubMed ID: 11013429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disruption of pairing and synapsis of chromosomes causes stage-specific apoptosis of male meiotic cells.
    Hamer G; Novak I; Kouznetsova A; Höög C
    Theriogenology; 2008 Feb; 69(3):333-9. PubMed ID: 17997150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward understanding the core meiotic transcriptome in mammals and its implications for somatic cancer.
    Chalmel F; Lardenois A; Primig M
    Ann N Y Acad Sci; 2007 Dec; 1120():1-15. PubMed ID: 17911412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histone crotonylation specifically marks the haploid male germ cell gene expression program: post-meiotic male-specific gene expression.
    Montellier E; Rousseaux S; Zhao Y; Khochbin S
    Bioessays; 2012 Mar; 34(3):187-93. PubMed ID: 22170506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic analysis of male 4C germ cell proteins involved in mouse meiosis.
    Guo X; Zhang P; Qi Y; Chen W; Chen X; Zhou Z; Sha J
    Proteomics; 2011 Jan; 11(2):298-308. PubMed ID: 21204256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Post-Meiotic Male Germ Cell Genome Organizational States.
    Govin J; Barral S; Morozumi Y; Hoghoughi N; Buchou T; Rousseaux S; Khochbin S
    Methods Mol Biol; 2018; 1832():293-307. PubMed ID: 30073534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bromodomain-dependent stage-specific male genome programming by Brdt.
    Gaucher J; Boussouar F; Montellier E; Curtet S; Buchou T; Bertrand S; Hery P; Jounier S; Depaux A; Vitte AL; Guardiola P; Pernet K; Debernardi A; Lopez F; Holota H; Imbert J; Wolgemuth DJ; Gérard M; Rousseaux S; Khochbin S
    EMBO J; 2012 Oct; 31(19):3809-20. PubMed ID: 22922464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.