These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 2278866)

  • 21. Evidence for role of cytosolic free calcium in hypoxia-induced proximal tubule injury.
    Kribben A; Wieder ED; Wetzels JF; Yu L; Gengaro PE; Burke TJ; Schrier RW
    J Clin Invest; 1994 May; 93(5):1922-9. PubMed ID: 8182125
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adipose-Derived Mesenchymal Stromal Cells Under Hypoxia: Changes in Extracellular Vesicles Secretion and Improvement of Renal Recovery after Ischemic Injury.
    Collino F; Lopes JA; CorrĂȘa S; Abdelhay E; Takiya CM; Wendt CHC; de Miranda KR; Vieyra A; Lindoso RS
    Cell Physiol Biochem; 2019; 52(6):1463-1483. PubMed ID: 31099507
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Renal tubular triglyercide accumulation following endotoxic, toxic, and ischemic injury.
    Zager RA; Johnson AC; Hanson SY
    Kidney Int; 2005 Jan; 67(1):111-21. PubMed ID: 15610234
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cytosolic-free calcium increases to greater than 100 micromolar in ATP-depleted proximal tubules.
    Weinberg JM; Davis JA; Venkatachalam MA
    J Clin Invest; 1997 Aug; 100(3):713-22. PubMed ID: 9239420
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Changes in [Ca2+]i in cultured rat proximal tubular epithelium: an in vitro model for renal ischemia.
    Chi WM; Berezesky IK; Smith MW; Trump BF
    Biochim Biophys Acta; 1995 Apr; 1243(3):513-20. PubMed ID: 7727528
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intracellular respiratory dysfunction and cell injury in short-term anoxia of rabbit renal proximal tubules.
    Takano T; Soltoff SP; Murdaugh S; Mandel LJ
    J Clin Invest; 1985 Dec; 76(6):2377-84. PubMed ID: 4077984
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preservation of complex I function during hypoxia-reoxygenation-induced mitochondrial injury in proximal tubules.
    Feldkamp T; Kribben A; Roeser NF; Senter RA; Kemner S; Venkatachalam MA; Nissim I; Weinberg JM
    Am J Physiol Renal Physiol; 2004 Apr; 286(4):F749-59. PubMed ID: 14665431
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel Na+/Ca2+ channel blocker, NS-7, suppresses hypoxic injury in rat cerebrocortical slices.
    Tatsumi S; Itoh Y; Ukai Y; Kimura K
    Naunyn Schmiedebergs Arch Pharmacol; 1998 Aug; 358(2):191-6. PubMed ID: 9750004
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Responses of type I cells dissociated from the rabbit carotid body to hypoxia.
    Biscoe TJ; Duchen MR
    J Physiol; 1990 Sep; 428():39-59. PubMed ID: 2231419
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of Ca2+ channel blockers, low Ca2+ medium and glycine on cell Ca2+ and injury in anoxic rabbit proximal tubules.
    Rose UM; Bindels RJ; Jansen JW; van Os CH
    Kidney Int; 1994 Jul; 46(1):223-9. PubMed ID: 7933841
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prior mechanical injury inhibits rise in intracellular Ca2+ concentration by oxygen-glucose deprivation in mouse hippocampal slices.
    Honda T; Fujiwara N; Abe T; Kumanishi T; Yoshimura M; Shimoji K
    Brain Res; 1994 Dec; 666(2):263-9. PubMed ID: 7882037
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ca2+ uptake, fatty acid, and LDH release during proximal tubule hypoxia: effects of mepacrine and dibucaine.
    Bunnachak D; Almeida AR; Wetzels JF; Gengaro P; Nemenoff RA; Burke TJ; Schrier RW
    Am J Physiol; 1994 Feb; 266(2 Pt 2):F196-201. PubMed ID: 8141320
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High energy phosphates, phospholipids, and calcium in ischemic renal tubular cell injury.
    Humes HD; Nguyen VD; Hunt DA
    Adv Exp Med Biol; 1986; 208():3-7. PubMed ID: 3551537
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanism of reduced GFR in rabbits with ischemic acute renal failure.
    Kim SJ; Lim YT; Kim BS; Cho SI; Woo JS; Jung JS; Kim YK
    Ren Fail; 2000 Mar; 22(2):129-41. PubMed ID: 10803759
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibitory effect of calcium channel blockers on human mesangial cell growth: evidence for actions independent of L-type Ca2+ channels.
    Orth SR; Nobiling R; Bönisch S; Ritz E
    Kidney Int; 1996 Mar; 49(3):868-79. PubMed ID: 8648932
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Do calcium channel blockers protect against renal ischemia?
    Puschett JB
    Am J Nephrol; 1987; 7 Suppl 1():49-56. PubMed ID: 3327381
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of ion channel blockade on the distribution of Na, K, Ca and other elements in oxygen-glucose deprived CA1 hippocampal neurons.
    LoPachin RM; Gaughan CL; Lehning EJ; Weber ML; Taylor CP
    Neuroscience; 2001; 103(4):971-83. PubMed ID: 11301205
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanisms through which high glucose concentration raises [Ca2+]i in renal proximal tubular cells.
    Symonian M; Smogorzewski M; Marcinkowski W; Krol E; Massry SG
    Kidney Int; 1998 Oct; 54(4):1206-13. PubMed ID: 9767536
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Meprin, a brush-border enzyme, plays an important role in hypoxic/ischemic acute renal tubular injury in rats.
    Carmago S; Shah SV; Walker PD
    Kidney Int; 2002 Mar; 61(3):959-66. PubMed ID: 11849450
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of verapamil and ryanodine on activity of the embryonic chick heart during anoxia and reoxygenation.
    Tenthorey D; de Ribaupierre Y; Kucera P; Raddatz E
    J Cardiovasc Pharmacol; 1998 Feb; 31(2):195-202. PubMed ID: 9475260
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.