These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 22788699)

  • 1. Conversion of carbohydrates in herbaceous crops during anaerobic digestion.
    Pakarinen A; Kymalainen M; Stoddard FL; Viikari L
    J Agric Food Chem; 2012 Aug; 60(32):7934-40. PubMed ID: 22788699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methane yield through anaerobic digestion for various maize varieties in China.
    Gao R; Yuan X; Zhu W; Wang X; Chen S; Cheng X; Cui Z
    Bioresour Technol; 2012 Aug; 118():611-4. PubMed ID: 22704906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The valuation of malnutrition in the mono-digestion of maize silage by anaerobic batch tests.
    Hinken L; Urban I; Haun E; Urban I; Weichgrebe D; Rosenwinkel KH
    Water Sci Technol; 2008; 58(7):1453-9. PubMed ID: 18957759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of preservation methods for improving biogas production and enzymatic conversion yields of annual crops.
    Pakarinen A; Maijala P; Jaakkola S; Stoddard FL; Kymäläinen M; Viikari L
    Biotechnol Biofuels; 2011 Jul; 4(1):20. PubMed ID: 21771298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soaking pretreatment of corn stover for bioethanol production followed by anaerobic digestion process.
    Zuo Z; Tian S; Chen Z; Li J; Yang X
    Appl Biochem Biotechnol; 2012 Aug; 167(7):2088-102. PubMed ID: 22669688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anaerobic digestion of grass silage in batch leach bed processes for methane production.
    Lehtomäki A; Huttunen S; Lehtinen TM; Rintala JA
    Bioresour Technol; 2008 May; 99(8):3267-78. PubMed ID: 17702572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production.
    Nges IA; Escobar F; Fu X; Björnsson L
    Waste Manag; 2012 Jan; 32(1):53-9. PubMed ID: 21975301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anaerobic digestion of maize in coupled leach-bed and anaerobic filter reactors.
    Cysneiros D; Banks CJ; Heaven S
    Water Sci Technol; 2008; 58(7):1505-11. PubMed ID: 18957766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anaerobic treatment of lignocellulosic material to co-produce methane and digested fiber for ethanol biorefining.
    Maclellan J; Chen R; Kraemer R; Zhong Y; Liu Y; Liao W
    Bioresour Technol; 2013 Feb; 130():418-23. PubMed ID: 23313688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of trace elements on methane formation from a synthetic model substrate for maize silage.
    Pobeheim H; Munk B; Johansson J; Guebitz GM
    Bioresour Technol; 2010 Jan; 101(2):836-9. PubMed ID: 19765984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ethanol production from hexoses, pentoses, and dilute-acid hydrolyzate by Mucor indicus.
    Sues A; Millati R; Edebo L; Taherzadeh MJ
    FEMS Yeast Res; 2005 Apr; 5(6-7):669-76. PubMed ID: 15780667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-Digestion of Sugar Beet Silage Increases Biogas Yield from Fibrous Substrates.
    Ahmed S; Einfalt D; Kazda M
    Biomed Res Int; 2016; 2016():2147513. PubMed ID: 27807538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of Ni, Co and Mo supplementation on methane yield from anaerobic mono-digestion of maize silage.
    Evranos B; Demirel B
    Environ Technol; 2015; 36(9-12):1556-62. PubMed ID: 25495753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemp hurds biorefining: A path to green L-(+)-lactic acid production.
    Gandolfi S; Pistone L; Ottolina G; Xu P; Riva S
    Bioresour Technol; 2015 Sep; 191():59-65. PubMed ID: 25983223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations.
    Amon T; Amon B; Kryvoruchko V; Machmüller A; Hopfner-Sixt K; Bodiroza V; Hrbek R; Friedel J; Pötsch E; Wagentristl H; Schreiner M; Zollitsch W
    Bioresour Technol; 2007 Dec; 98(17):3204-12. PubMed ID: 16935493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic variation of the microbial community structure during the long-time mono-fermentation of maize and sugar beet silage.
    Klang J; Theuerl S; Szewzyk U; Huth M; Tölle R; Klocke M
    Microb Biotechnol; 2015 Sep; 8(5):764-75. PubMed ID: 25712194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of factors influencing the biomethane yield of maize silages.
    Mayer F; Gerin PA; Noo A; Foucart G; Flammang J; Lemaigre S; Sinnaeve G; Dardenne P; Delfosse P
    Bioresour Technol; 2014 Feb; 153():260-8. PubMed ID: 24368275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methane Potential and Microbial Community Dynamics in Anaerobic Digestion of Silage and Dry Cornstalks: a Substrate Exchange Study.
    Zhao Y; Yuan X; Wen B; Wang X; Zhu W; Cui Z
    Appl Biochem Biotechnol; 2017 Jan; 181(1):91-111. PubMed ID: 27465037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving aerobic stability and biogas production of maize silage using silage additives.
    Herrmann C; Idler C; Heiermann M
    Bioresour Technol; 2015 Dec; 197():393-403. PubMed ID: 26348286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioconversion of industrial hemp to ethanol and methane: the benefits of steam pretreatment and co-production.
    Kreuger E; Sipos B; Zacchi G; Svensson SE; Björnsson L
    Bioresour Technol; 2011 Feb; 102(3):3457-65. PubMed ID: 21111616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.