These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 22788792)

  • 1. Water oxidation on pure and doped hematite (0001) surfaces: prediction of Co and Ni as effective dopants for electrocatalysis.
    Liao P; Keith JA; Carter EA
    J Am Chem Soc; 2012 Aug; 134(32):13296-309. PubMed ID: 22788792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The (0001) surfaces of α-Fe2O3 nanocrystals are preferentially activated for water oxidation by Ni doping.
    Zhao P; Wu F; Kronawitter CX; Chen Z; Yao N; Koel BE
    Phys Chem Chem Phys; 2015 Oct; 17(40):26797-803. PubMed ID: 26395868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water oxidation catalysis: effects of nickel incorporation on the structural and chemical properties of the α-Fe₂O₃(0001) surface.
    Zhao P; Koel BE
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22289-96. PubMed ID: 25423044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of doping β-NiOOH with Co on the catalytic oxidation of water: DFT+U calculations.
    Costanzo F
    Phys Chem Chem Phys; 2016 Mar; 18(10):7490-501. PubMed ID: 26902752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new hematite photoanode doping strategy for solar water splitting: oxygen vacancy generation.
    Yang TY; Kang HY; Sim U; Lee YJ; Lee JH; Koo B; Nam KT; Joo YC
    Phys Chem Chem Phys; 2013 Feb; 15(6):2117-24. PubMed ID: 23288103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes.
    Sivula K; Le Formal F; Grätzel M
    ChemSusChem; 2011 Apr; 4(4):432-49. PubMed ID: 21416621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photo-driven oxidation of water on α-Fe2O3 surfaces: an ab initio study.
    Nguyen MT; Seriani N; Piccinin S; Gebauer R
    J Chem Phys; 2014 Feb; 140(6):064703. PubMed ID: 24527933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The electrical conductivity of thin film donor doped hematite: from insulator to semiconductor by defect modulation.
    Engel J; Tuller HL
    Phys Chem Chem Phys; 2014 Jun; 16(23):11374-80. PubMed ID: 24797819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen generation by water splitting on hematite (0001) surfaces: first-principles calculations.
    Pan H; Meng X; Qin G
    Phys Chem Chem Phys; 2014 Dec; 16(46):25442-8. PubMed ID: 25342277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile Zn and Ni Co-Doped Hematite Nanorods for Efficient Photocatalytic Water Oxidation.
    Talibawo J; Kyesmen PI; Cyulinyana MC; Diale M
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36079998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-temperature activation of hematite nanowires for photoelectrochemical water oxidation.
    Ling Y; Wang G; Wang H; Yang Y; Li Y
    ChemSusChem; 2014 Mar; 7(3):848-53. PubMed ID: 24493003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid density functional theory band structure engineering in hematite.
    Pozun ZD; Henkelman G
    J Chem Phys; 2011 Jun; 134(22):224706. PubMed ID: 21682532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting.
    Wang D; Chen H; Chang G; Lin X; Zhang Y; Aldalbahi A; Peng C; Wang J; Fan C
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):14072-8. PubMed ID: 26052922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antimony-doped tin oxide nanorods as a transparent conducting electrode for enhancing photoelectrochemical oxidation of water by hematite.
    Sun Y; Chemelewski WD; Berglund SP; Li C; He H; Shi G; Mullins CB
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5494-9. PubMed ID: 24665964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformally Coupling CoAl-Layered Double Hydroxides on Fluorine-Doped Hematite: Surface and Bulk Co-Modification for Enhanced Photoelectrochemical Water Oxidation.
    Wang C; Long X; Wei S; Wang T; Li F; Gao L; Hu Y; Li S; Jin J
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):29799-29806. PubMed ID: 31368692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-redox doping boosts oxygen evolution electrocatalysis on hematite.
    Nguyën HC; Garcés-Pineda FA; de Fez-Febré M; Galán-Mascarós JR; López N
    Chem Sci; 2020 Jan; 11(9):2464-2471. PubMed ID: 34084411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heteroatom Doping Strategy for Establishing Hematite Homojunction as Efficient Photocatalyst for Accelerating Water Splitting.
    Tao SM; Chung RJ; Lin LY
    Chem Asian J; 2020 Nov; 15(22):3853-3860. PubMed ID: 32955150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative DFT study of inner-sphere As(III) complexes on hydrated α-Fe2O3(0001) surface models.
    Goffinet CJ; Mason SE
    J Environ Monit; 2012 Jul; 14(7):1860-71. PubMed ID: 22718082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Photoelectrochemical Water Oxidation on Hematite with Fluorine-Doped FeOOH and FeNiOOH as Dual Cocatalysts.
    Deng J; Zhang Q; Feng K; Lan H; Zhong J; Chaker M; Ma D
    ChemSusChem; 2018 Nov; 11(21):3783-3789. PubMed ID: 30215886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mechanistic study into the catalytic effect of Ni(OH)2 on hematite for photoelectrochemical water oxidation.
    Wang G; Ling Y; Lu X; Zhai T; Qian F; Tong Y; Li Y
    Nanoscale; 2013 May; 5(10):4129-33. PubMed ID: 23563928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.