These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 22789479)

  • 1. Treatment of Phaeodactylum tricornutum cells with papain facilitates lipid extraction.
    Horst I; Parker BM; Dennis JS; Howe CJ; Scott SA; Smith AG
    J Biotechnol; 2012 Nov; 162(1):40-9. PubMed ID: 22789479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An efficient and scalable extraction and quantification method for algal derived biofuel.
    Lohman EJ; Gardner RD; Halverson L; Macur RE; Peyton BM; Gerlach R
    J Microbiol Methods; 2013 Sep; 94(3):235-44. PubMed ID: 23810969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid, colorimetric quantification of lipid from algal cultures.
    Wawrik B; Harriman BH
    J Microbiol Methods; 2010 Mar; 80(3):262-6. PubMed ID: 20093146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined nitrogen limitation and hydrogen peroxide treatment enhances neutral lipid accumulation in the marine diatom Phaeodactylum tricornutum.
    Burch AR; Franz AK
    Bioresour Technol; 2016 Nov; 219():559-565. PubMed ID: 27529521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The lipid biochemistry of eukaryotic algae.
    Li-Beisson Y; Thelen JJ; Fedosejevs E; Harwood JL
    Prog Lipid Res; 2019 Apr; 74():31-68. PubMed ID: 30703388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of starvation on the distribution of positional isomers and enantiomers of triacylglycerol in the diatom Phaeodactylum tricornutum.
    Rezanka T; Lukavský J; Nedbalová L; Kolouchová I; Sigler K
    Phytochemistry; 2012 Aug; 80():17-27. PubMed ID: 22704815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism and challenges in commercialisation of algal biofuels.
    Singh A; Nigam PS; Murphy JD
    Bioresour Technol; 2011 Jan; 102(1):26-34. PubMed ID: 20609580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Triacylglycerol profiling of marine microalgae by mass spectrometry.
    Danielewicz MA; Anderson LA; Franz AK
    J Lipid Res; 2011 Nov; 52(11):2101-8. PubMed ID: 21840867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flux balance analysis of primary metabolism in the diatom Phaeodactylum tricornutum.
    Kim J; Fabris M; Baart G; Kim MK; Goossens A; Vyverman W; Falkowski PG; Lun DS
    Plant J; 2016 Jan; 85(1):161-76. PubMed ID: 26590126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sediment toxicity tests involving immobilized microalgae (Phaeodactylum tricornutum Bohlin).
    Moreno-Garrido I; Lubián LM; Blasco J
    Environ Int; 2007 May; 33(4):481-5. PubMed ID: 17157382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exudates of different marine algae promote growth and mediate trace metal binding in Phaeodactylum tricornutum.
    Vasconcelos MT; Leal MF
    Mar Environ Res; 2008 Dec; 66(5):499-507. PubMed ID: 18829098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of lipid storage in Phaeodactylum tricornutum and Tetraselmis suecica using laser scanning confocal microscopy.
    Wong DM; Franz AK
    J Microbiol Methods; 2013 Nov; 95(2):122-8. PubMed ID: 23933493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of triacylglycerol and EPA production in Phaeodactylum tricornutum under nitrogen starvation at different light intensities.
    Remmers IM; Martens DE; Wijffels RH; Lamers PP
    PLoS One; 2017; 12(4):e0175630. PubMed ID: 28403203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-averaged copper concentrations from continuous exposures predicts pulsed exposure toxicity to the marine diatom, Phaeodactylum tricornutum: Importance of uptake and elimination.
    Angel BM; Simpson SL; Chariton AA; Stauber JL; Jolley DF
    Aquat Toxicol; 2015 Jul; 164():1-9. PubMed ID: 25911575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supercritical Fluid Extraction of Fucoxanthin from the Diatom
    Ruiz-Domínguez MC; Salinas F; Medina E; Rincón B; Martín MÁ; Gutiérrez MC; Cerezal-Mezquita P
    Mar Drugs; 2022 Feb; 20(2):. PubMed ID: 35200656
    [No Abstract]   [Full Text] [Related]  

  • 16. Systematic investigation of biomass and lipid productivity by microalgae in photobioreactors for biodiesel application.
    Pruvost J; Van Vooren G; Le Gouic B; Couzinet-Mossion A; Legrand J
    Bioresour Technol; 2011 Jan; 102(1):150-8. PubMed ID: 20675127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum.
    Kim SM; Jung YJ; Kwon ON; Cha KH; Um BH; Chung D; Pan CH
    Appl Biochem Biotechnol; 2012 Apr; 166(7):1843-55. PubMed ID: 22371063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial diketopiperazines stimulate diatom growth and lipid accumulation.
    Sittmann J; Bae M; Mevers E; Li M; Quinn A; Sriram G; Clardy J; Liu Z
    Plant Physiol; 2021 Jun; 186(2):1159-1170. PubMed ID: 33620482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anaerobic digestibility of marine microalgae Phaeodactylum tricornutum in a lab-scale anaerobic membrane bioreactor.
    Zamalloa C; De Vrieze J; Boon N; Verstraete W
    Appl Microbiol Biotechnol; 2012 Jan; 93(2):859-69. PubMed ID: 22005739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A cheap two-step cultivation of Phaeodactylum tricornutum for increased TAG production and differential expression of TAG biosynthesis associated genes.
    Karpagam R; Jawaharraj K; Ashokkumar B; Pugazhendhi A; Varalakshmi P
    J Biotechnol; 2022 Aug; 354():53-62. PubMed ID: 35709890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.