BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 22789520)

  • 1. Using magnetic and chemical measurements to detect atmospherically-derived metal pollution in artificial soils and metal uptake in plants.
    Sapkota B; Cioppa MT
    Environ Pollut; 2012 Nov; 170():131-44. PubMed ID: 22789520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multicorrelation models and uptake factors to estimate extractable metal concentrations from soil and metal in plants in pasturelands fertilized with manure.
    Lopes C; Herva M; Franco-Uría A; Roca E
    Environ Pollut; 2012 Jul; 166():17-22. PubMed ID: 22459710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A geochemical study of toxic metal translocation in an urban brownfield wetland.
    Qian Y; Gallagher FJ; Feng H; Wu M
    Environ Pollut; 2012 Jul; 166():23-30. PubMed ID: 22459711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical and biological properties in the rhizosphere of Lupinus albus alter soil heavy metal fractionation.
    Martínez-Alcalá I; Walker DJ; Bernal MP
    Ecotoxicol Environ Saf; 2010 May; 73(4):595-602. PubMed ID: 20060590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal accumulation in wild plants surrounding mining wastes.
    González RC; González-Chávez MC
    Environ Pollut; 2006 Nov; 144(1):84-92. PubMed ID: 16631286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution and accumulation of metals in soils and plant from a lead-zinc mineland in Guangxi, South China.
    Wang Y; Zhan M; Zhu H; Guo S; Wang W; Xue B
    Bull Environ Contam Toxicol; 2012 Feb; 88(2):198-203. PubMed ID: 22105935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive long-term monitoring of soil health in metal phytostabilization: ecological attributes and ecosystem services based on soil microbial parameters.
    Epelde L; Becerril JM; Alkorta I; Garbisu C
    Int J Phytoremediation; 2014; 16(7-12):971-81. PubMed ID: 24933897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proximal spectral sensing to monitor phytoremediation of metal-contaminated soils.
    Rathod PH; Rossiter DG; Noomen MF; van der Meer FD
    Int J Phytoremediation; 2013; 15(5):405-26. PubMed ID: 23488168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soil pollution assessment and identification of hyperaccumulating plants in chromated copper arsenate (CCA) contaminated sites, Korea.
    Usman AR; Lee SS; Awad YM; Lim KJ; Yang JE; Ok YS
    Chemosphere; 2012 May; 87(8):872-8. PubMed ID: 22342337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring metals in terrestrial environments within a bioavailability framework and a focus on soil extraction.
    Peijnenburg WJ; Zablotskaja M; Vijver MG
    Ecotoxicol Environ Saf; 2007 Jun; 67(2):163-79. PubMed ID: 17445889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability.
    Chehregani A; Noori M; Yazdi HL
    Ecotoxicol Environ Saf; 2009 Jul; 72(5):1349-53. PubMed ID: 19386362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Are plants useful as accumulation indicators of metal bioavailability?
    Remon E; Bouchardon JL; Le Guédard M; Bessoule JJ; Conord C; Faure O
    Environ Pollut; 2013 Apr; 175():1-7. PubMed ID: 23291231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilization of optimized BCR three-step sequential and dilute HCl single extraction procedures for soil-plant metal transfer predictions in contaminated lands.
    Kubová J; Matús P; Bujdos M; Hagarová I; Medved' J
    Talanta; 2008 May; 75(4):1110-22. PubMed ID: 18585191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lithological and pedological influences on the magnetic susceptibility of soil: their consideration in magnetic pollution mapping.
    Hanesch M; Rantitsch G; Hemetsberger S; Scholger R
    Sci Total Environ; 2007 Sep; 382(2-3):351-63. PubMed ID: 17509666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of EDTA washing of metal polluted garden soils. Part II: Can remediated soil be used as a plant substrate?
    Jelusic M; Vodnik D; Macek I; Lestan D
    Sci Total Environ; 2014 Mar; 475():142-52. PubMed ID: 24342493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heavy metal concentrations in soils and plant accumulation in a restored manganese mineland in Guangxi, South China.
    Li MS; Luo YP; Su ZY
    Environ Pollut; 2007 May; 147(1):168-75. PubMed ID: 17014941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic anomalies of forest soils in the Upper Silesia-Northern Moravia region.
    Magiera T; Kapicka A; Petrovský E; Strzyszcz Z; Fialová H; Rachwał M
    Environ Pollut; 2008 Dec; 156(3):618-27. PubMed ID: 18687508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Approaches for enhanced phytoextraction of heavy metals.
    Bhargava A; Carmona FF; Bhargava M; Srivastava S
    J Environ Manage; 2012 Aug; 105():103-20. PubMed ID: 22542973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge.
    Bose S; Bhattacharyya AK
    Chemosphere; 2008 Jan; 70(7):1264-72. PubMed ID: 17825356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Labile pools of Pb in vegetable-growing soils investigated by an isotope dilution method and its influence on soil pH.
    Xie H; Huang ZY; Cao YL; Cai C; Zeng XC; Li J
    J Environ Monit; 2012 Aug; 14(8):2230-7. PubMed ID: 22772653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.