These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 22789753)
1. A nonlinear electrophoretic model for PeakMaster: part IV. Electromigration dispersion in systems that contain a neutral complex-forming agent and a fully charged analyte. Experimental verification. Beneš M; Svobodová J; Hruška V; Dvořák M; Zusková I; Gaš B J Chromatogr A; 2012 Dec; 1267():109-15. PubMed ID: 22789753 [TBL] [Abstract][Full Text] [Related]
2. A nonlinear electrophoretic model for PeakMaster: part III. Electromigration dispersion in systems that contain a neutral complex-forming agent and a fully charged analyte. Theory. Hruška V; Svobodová J; Beneš M; Gaš B J Chromatogr A; 2012 Dec; 1267():102-8. PubMed ID: 22818776 [TBL] [Abstract][Full Text] [Related]
3. Simulation of the effects of complex- formation equilibria in electrophoresis: II. experimental verification. Svobodová J; Beneš M; Hruška V; Ušelová K; Gaš B Electrophoresis; 2012 Mar; 33(6):948-57. PubMed ID: 22528415 [TBL] [Abstract][Full Text] [Related]
4. A nonlinear electrophoretic model for PeakMaster: II. experimental verification. Riesová M; Hruška V; Gaš B Electrophoresis; 2012 Mar; 33(6):931-7. PubMed ID: 22528413 [TBL] [Abstract][Full Text] [Related]
5. Generalized model of the linear theory of electromigration and its application to electrokinetic chromatography: Capillary zone electrophoretic systems with complex-forming equilibria. Dovhunová M; Malý M; Dubský P; Gerlero GS; Kler PA J Chromatogr A; 2020 Jan; 1610():460595. PubMed ID: 31606156 [TBL] [Abstract][Full Text] [Related]
6. A nonlinear electrophoretic model for PeakMaster: I. mathematical model. Hruška V; Riesová M; Gaš B Electrophoresis; 2012 Mar; 33(6):923-30. PubMed ID: 22528412 [TBL] [Abstract][Full Text] [Related]
7. Determination of thermodynamic values of acidic dissociation constants and complexation constants of profens and their utilization for optimization of separation conditions by Simul 5 Complex. Riesová M; Svobodová J; Ušelová K; Tošner Z; Zusková I; Gaš B J Chromatogr A; 2014 Oct; 1364():276-88. PubMed ID: 25213298 [TBL] [Abstract][Full Text] [Related]
8. Eigenmobilities in background electrolytes for capillary zone electrophoresis: IV. Computer program PeakMaster. Jaros M; Hruska V; Stedrý M; Zusková I; Gas B Electrophoresis; 2004 Oct; 25(18-19):3080-5. PubMed ID: 15472981 [TBL] [Abstract][Full Text] [Related]
9. Simulation of the effects of complex-formation equilibria in electrophoresis: III. Simultaneous effects of chiral selector concentration and background electrolyte pH. Svobodová J; Beneš M; Dubský P; Vigh G; Gaš B Electrophoresis; 2012 Oct; 33(19-20):3012-20. PubMed ID: 22996563 [TBL] [Abstract][Full Text] [Related]
10. Conductivity detection in capillary zone electrophoresis: inspection by PeakMaster. Jaros M; Soga T; van de Goor T; Gas B Electrophoresis; 2005 May; 26(10):1948-53. PubMed ID: 15818577 [TBL] [Abstract][Full Text] [Related]
11. Optimization of background electrolytes for capillary electrophoresis: II. Computer simulation and comparison with experiments. Jaros M; Vceláková K; Zusková I; Gas B Electrophoresis; 2002 Aug; 23(16):2667-77. PubMed ID: 12210171 [TBL] [Abstract][Full Text] [Related]
12. Generalized model of electromigration with 1:1 (analyte:selector) complexation stoichiometry: part II. Application to dual systems and experimental verification. Müllerová L; Dubský P; Gaš B J Chromatogr A; 2015 Mar; 1384():147-54. PubMed ID: 25666498 [TBL] [Abstract][Full Text] [Related]
13. Enhancement of the conductivity detection signal in capillary electrophoresis systems using neutral cyclodextrins as sweeping agents. Boublík M; Riesová M; Dubský P; Gaš B Electrophoresis; 2018 Jun; 39(11):1390-1398. PubMed ID: 29451297 [TBL] [Abstract][Full Text] [Related]
14. Simulation of the effects of complex- formation equilibria in electrophoresis: I. mathematical model. Hruška V; Beneš M; Svobodová J; Zusková I; Gaš B Electrophoresis; 2012 Mar; 33(6):938-47. PubMed ID: 22528414 [TBL] [Abstract][Full Text] [Related]
15. Contemporary chiral simulators for capillary zone electrophoresis. Caslavska J; Thormann W Electrophoresis; 2020 Apr; 41(7-8):502-513. PubMed ID: 31702052 [TBL] [Abstract][Full Text] [Related]
16. Generalized model of the linear theory of electromigration and its application to electrokinetic chromatography: Theory and software PeakMaster 6-Next Generation. Malý M; Dovhunová M; Dvořák M; Gerlero GS; Kler PA; Hruška V; Dubský P Electrophoresis; 2019 Mar; 40(5):683-692. PubMed ID: 30548631 [TBL] [Abstract][Full Text] [Related]
17. Model of CE enantioseparation systems with a mixture of chiral selectors. Part I. Theory of migration and interconversion. Dubský P; Svobodová J; Gas B J Chromatogr B Analyt Technol Biomed Life Sci; 2008 Nov; 875(1):30-4. PubMed ID: 18701358 [TBL] [Abstract][Full Text] [Related]
18. Applicability and limitations of affinity capillary electrophoresis and vacancy affinity capillary electrophoresis methods for determination of complexation constants. Dvořák M; Svobodová J; Beneš M; Gaš B Electrophoresis; 2013 Mar; 34(5):761-7. PubMed ID: 23254978 [TBL] [Abstract][Full Text] [Related]
19. Generalized model of electromigration with 1:1 (analyte:selector) complexation stoichiometry: part I. Theory. Dubský P; Müllerová L; Dvořák M; Gaš B J Chromatogr A; 2015 Mar; 1384():142-6. PubMed ID: 25637010 [TBL] [Abstract][Full Text] [Related]
20. Determination of accurate electroosmotic mobility and analyte effective mobility values in the presence of charged interacting agents in capillary electrophoresis. Williams BA; Vigh G Anal Chem; 1997 Nov; 69(21):4445-51. PubMed ID: 21639176 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]