These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 22789809)

  • 21. Greater toe grip and gentler heel strike are the strategies to adapt to slippery surface.
    Fong DT; Mao DW; Li JX; Hong Y
    J Biomech; 2008; 41(4):838-44. PubMed ID: 18068710
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biomechanical behaviour of heel pad tissue: experimental testing, constitutive formulation, and numerical modelling.
    Natali AN; Fontanella CG; Carniel EL; Young M
    Proc Inst Mech Eng H; 2011 May; 225(5):449-59. PubMed ID: 21755775
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Running shoes increase achilles tendon load in walking: an acoustic propagation study.
    Wearing SC; Reed L; Hooper SL; Bartold S; Smeathers JE; Brauner T
    Med Sci Sports Exerc; 2014 Aug; 46(8):1604-9. PubMed ID: 24500535
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Footwear affects the behavior of low back muscles when jogging.
    Ogon M; Aleksiev AR; Spratt KF; Pope MH; Saltzman CL
    Int J Sports Med; 2001 Aug; 22(6):414-9. PubMed ID: 11531033
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Foot strike and the properties of the human heel pad.
    Ker RF; Bennett MB; Alexander RM; Kester RC
    Proc Inst Mech Eng H; 1989; 203(4):191-6. PubMed ID: 2701955
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Estimating the material properties of heel pad sub-layers using inverse Finite Element Analysis.
    Ahanchian N; Nester CJ; Howard D; Ren L; Parker D
    Med Eng Phys; 2017 Feb; 40():11-19. PubMed ID: 27913178
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vivo biomechanical behavior of the human heel pad during the stance phase of gait.
    Gefen A; Megido-Ravid M; Itzchak Y
    J Biomech; 2001 Dec; 34(12):1661-5. PubMed ID: 11716870
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Significance of heel pad confinement for the shock absorption at heel strike.
    Jørgensen U; Ekstrand J
    Int J Sports Med; 1988 Dec; 9(6):468-73. PubMed ID: 3253241
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effects of preferred and non-preferred running strike patterns on tissue vibration properties.
    Enders H; von Tscharner V; Nigg BM
    J Sci Med Sport; 2014 Mar; 17(2):218-22. PubMed ID: 23642961
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic material characterization of the human heel pad based on in vivo experimental tests and numerical analysis.
    Kardeh M; Vogl TJ; Huebner F; Nelson K; Stief F; Silber G
    Med Eng Phys; 2016 Sep; 38(9):940-5. PubMed ID: 27387903
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rearfoot and midfoot or forefoot impacts in habitually shod runners.
    Boyer ER; Rooney BD; Derrick TR
    Med Sci Sports Exerc; 2014 Jul; 46(7):1384-91. PubMed ID: 24300124
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental estimation of energy absorption during heel strike in human barefoot walking.
    Baines PM; Schwab AL; van Soest AJ
    PLoS One; 2018; 13(6):e0197428. PubMed ID: 29953479
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The oscillatory behavior of the CoM facilitates mechanical energy balance between push-off and heel strike.
    Kim S; Park S
    J Biomech; 2012 Jan; 45(2):326-33. PubMed ID: 22035641
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acute effect of different minimalist shoes on foot strike pattern and kinematics in rearfoot strikers during running.
    Squadrone R; Rodano R; Hamill J; Preatoni E
    J Sports Sci; 2015; 33(11):1196-204. PubMed ID: 25529114
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Measurement of functional heel pad behaviour in-shoe during gait using orthotic embedded ultrasonography.
    Telfer S; Woodburn J; Turner DE
    Gait Posture; 2014; 39(1):328-32. PubMed ID: 23962596
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Constitutive formulation and analysis of heel pad tissues mechanics.
    Natali AN; Fontanella CG; Carniel EL
    Med Eng Phys; 2010 Jun; 32(5):516-22. PubMed ID: 20304698
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of heel design in an orthopedic shoe on ground reaction forces during walking.
    Daryabor A; Saeedi H; Ghasemi MS; Yazdani M; Kamali M; Nabavi H; Curran S; Amini N
    Prosthet Orthot Int; 2016 Oct; 40(5):598-605. PubMed ID: 26271262
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Explicit finite element modelling of heel pad mechanics in running: inclusion of body dynamics and application of physiological impact loads.
    Chen WM; Lee PV
    Comput Methods Biomech Biomed Engin; 2015; 18(14):1582-95. PubMed ID: 24980181
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Effect of an In-shoe Orthotic Heel Lift on Loading of the Achilles Tendon During Shod Walking.
    Wulf M; Wearing SC; Hooper SL; Bartold S; Reed L; Brauner T
    J Orthop Sports Phys Ther; 2016 Feb; 46(2):79-86. PubMed ID: 26755409
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Muscle activity reduces soft-tissue resonance at heel-strike during walking.
    Wakeling JM; Liphardt AM; Nigg BM
    J Biomech; 2003 Dec; 36(12):1761-9. PubMed ID: 14614930
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.