These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 22789818)

  • 1. The multi-annual nitrogen budget of a peat-covered catchment--changing from sink to source?
    Worrall F; Clay GD; Burt TP; Rose R
    Sci Total Environ; 2012 Sep; 433():178-88. PubMed ID: 22789818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon budget for a British upland peat catchment.
    Worrall F; Reed M; Warburton J; Burt T
    Sci Total Environ; 2003 Aug; 312(1-3):133-46. PubMed ID: 12873406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The multi-annual carbon budget of a peat-covered catchment.
    Worrall F; Burt TP; Rowson JG; Warburton J; Adamson JK
    Sci Total Environ; 2009 Jun; 407(13):4084-94. PubMed ID: 19375152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can carbon offsetting pay for upland ecological restoration?
    Worrall F; Evans MG; Bonn A; Reed MS; Chapman D; Holden J
    Sci Total Environ; 2009 Dec; 408(1):26-36. PubMed ID: 19818993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Land management as a factor controlling dissolved organic carbon release from upland peat soils 1: spatial variation in DOC productivity.
    Yallop AR; Clutterbuck B
    Sci Total Environ; 2009 Jun; 407(12):3803-13. PubMed ID: 19345986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peat soils as a source of lead contamination to upland fluvial systems.
    Rothwell JJ; Evans MG; Daniels SM; Allott TE
    Environ Pollut; 2008 Jun; 153(3):582-9. PubMed ID: 17949867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High fluvial export of dissolved organic nitrogen from a peatland catchment with elevated inorganic nitrogen deposition.
    Edokpa DA; Evans MG; Rothwell JJ
    Sci Total Environ; 2015 Nov; 532():711-22. PubMed ID: 26119385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Link between DOC in near surface peat and stream water in an upland catchment.
    Clark JM; Lane SN; Chapman PJ; Adamson JK
    Sci Total Environ; 2008 Oct; 404(2-3):308-15. PubMed ID: 18076974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Future carbon balance of China's forests under climate change and increasing CO2.
    Ju WM; Chen JM; Harvey D; Wang S
    J Environ Manage; 2007 Nov; 85(3):538-62. PubMed ID: 17187919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atmospheric mercury exchange with a tallgrass prairie ecosystem housed in mesocosms.
    Stamenkovic J; Gustin MS; Arnone JA; Johnson DW; Larsen JD; Verburg PS
    Sci Total Environ; 2008 Nov; 406(1-2):227-38. PubMed ID: 18775555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The interaction between decomposition, net N and P mineralization and their mobilization to the surface water in fens.
    Geurts JJ; Smolders AJ; Banach AM; van de Graaf JP; Roelofs JG; Lamers LP
    Water Res; 2010 Jun; 44(11):3487-95. PubMed ID: 20392472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Land management as a factor controlling dissolved organic carbon release from upland peat soils 2: changes in DOC productivity over four decades.
    Clutterbuck B; Yallop AR
    Sci Total Environ; 2010 Nov; 408(24):6179-91. PubMed ID: 20869100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reservoirs as hotspots of fluvial carbon cycling in peatland catchments.
    Stimson AG; Allott TEH; Boult S; Evans MG
    Sci Total Environ; 2017 Feb; 580():398-411. PubMed ID: 28012649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A spatial total nitrogen budget for Great Britain.
    Fan X; Worrall F; Baldini LM; Burt TP
    Sci Total Environ; 2020 Aug; 728():138864. PubMed ID: 32361583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO₂.
    Drake JE; Gallet-Budynek A; Hofmockel KS; Bernhardt ES; Billings SA; Jackson RB; Johnsen KS; Lichter J; McCarthy HR; McCormack ML; Moore DJ; Oren R; Palmroth S; Phillips RP; Pippen JS; Pritchard SG; Treseder KK; Schlesinger WH; Delucia EH; Finzi AC
    Ecol Lett; 2011 Apr; 14(4):349-57. PubMed ID: 21303437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soil carbon and nitrogen storage in response to fire in a temperate mixed-grass savanna.
    Dai X; Boutton TW; Hailemichael M; Ansley RJ; Jessup KE
    J Environ Qual; 2006; 35(4):1620-8. PubMed ID: 16825482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CO2 deficit in temperate forest soils receiving high atmospheric N-deposition.
    Fleischer S
    Ambio; 2003 Feb; 32(1):2-5. PubMed ID: 12691484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chronic atmospheric reactive N deposition has breached the N sink capacity of a northern ombrotrophic peatbog increasing the gaseous and fluvial N losses.
    Sgouridis F; Yates CA; Lloyd CEM; Saiz E; Schillereff DN; Tomlinson S; Williamson J; Ullah S
    Sci Total Environ; 2021 Sep; 787():147552. PubMed ID: 34004537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of atmospheric nitrogen deposition in a temperate calcareous forest soil.
    Morier I; Guenat C; Siegwolf R; Védy JC; Schleppi P
    J Environ Qual; 2008; 37(6):2012-21. PubMed ID: 18948453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peat Accretion and N, P, and Organic C Accumulation in Nutrient-Enriched and Unenriched Everglades Peatlands.
    Craft CB; Richardson CJ
    Ecol Appl; 1993 Aug; 3(3):446-458. PubMed ID: 27759248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.