These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 2279008)

  • 21. GAME: a computer graphics method for calculating and displaying the molecular electrostatic potential.
    Hayd H; Bergner A; Preuss H
    J Mol Graph; 1995 Feb; 13(1):2-9, 49. PubMed ID: 7794830
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Solvent effects in the slow dynamics of proteins.
    Hinsen K; Kneller GR
    Proteins; 2008 Mar; 70(4):1235-42. PubMed ID: 17853448
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrostatic recognition between superoxide and copper, zinc superoxide dismutase.
    Getzoff ED; Tainer JA; Weiner PK; Kollman PA; Richardson JS; Richardson DC
    Nature; 1983 Nov 17-23; 306(5940):287-90. PubMed ID: 6646211
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Visualizing properties of atomic and molecular systems.
    Flurchick K; Bartolotti L
    J Mol Graph; 1995 Feb; 13(1):10-3, 50. PubMed ID: 7794827
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular modeling and electrostatic potential calculations on chemically modified Cu,Zn superoxide dismutases from Bos taurus and shark Prionace glauca: role of Lys134 in electrostatically steering the substrate to the active site.
    Polticelli F; Falconi M; O'Neill P; Petruzelli R; Galtieri A; Lania A; Calabrese L; Rotilio G; Desideri A
    Arch Biochem Biophys; 1994 Jul; 312(1):22-30. PubMed ID: 8031131
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient method for the generation and display of electrostatic potential surfaces from ab-initio wavefunctions.
    Sokalski WA; Sneddon SF
    J Mol Graph; 1991 Jun; 9(2):74-7, 94. PubMed ID: 1768644
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flexibility in monomeric Cu,Zn superoxide dismutase detected by limited proteolysis and molecular dynamics simulation.
    Falconi M; Parrilli L; Battistoni A; Desideri A
    Proteins; 2002 Jun; 47(4):513-20. PubMed ID: 12001230
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The essential dynamics of Cu, Zn superoxide dismutase: suggestion of intersubunit communication.
    Chillemi G; Falconi M; Amadei A; Zimatore G; Desideri A; Di Nola A
    Biophys J; 1997 Aug; 73(2):1007-18. PubMed ID: 9251818
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A spectroscopic and molecular dynamics study of native and of a mutant of Xenopus laevis Cu,Zn superoxide dismutase: mechanistic consequences of replacing four charged amino acids on the 'electrostatic' loop.
    Falconi M; Venerini F; Desideri A
    Biophys Chem; 1998 Dec; 75(3):235-48. PubMed ID: 9894341
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A precise analytical method for calculating the electrostatic energy of macromolecules in aqueous solution.
    Schaefer M; Froemmel C
    J Mol Biol; 1990 Dec; 216(4):1045-66. PubMed ID: 2266555
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel dimeric interface and electrostatic recognition in bacterial Cu,Zn superoxide dismutase.
    Bourne Y; Redford SM; Steinman HM; Lepock JR; Tainer JA; Getzoff ED
    Proc Natl Acad Sci U S A; 1996 Nov; 93(23):12774-9. PubMed ID: 8917495
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular dynamics using atomic-resolution structure reveal structural fluctuations that may lead to polymerization of human Cu-Zn superoxide dismutase.
    Strange RW; Yong CW; Smith W; Hasnain SS
    Proc Natl Acad Sci U S A; 2007 Jun; 104(24):10040-4. PubMed ID: 17548825
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Advances in the understanding of the structure-function relationship in Cu,Zn superoxide dismutase.
    Banci L; Bertini I; Cabelli DE; Hallewell RA; Luchinat C; Viezzoli MS
    Free Radic Res Commun; 1991; 12-13 Pt 1():239-51. PubMed ID: 1649093
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Graphics visualization of molecular surfaces.
    Gadre SR; Taspa A
    J Mol Graph; 1994 Mar; 12(1):45-8, 37. PubMed ID: 8011602
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Filtering molecular dynamics trajectories to reveal low-frequency collective motions: phospholipase A2.
    Sessions RB; Dauber-Osguthorpe P; Osguthorpe DJ
    J Mol Biol; 1989 Dec; 210(3):617-33. PubMed ID: 2614836
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of full-atomic and coarse-grained models to examine the molecular fluctuations of c-AMP dependent protein kinase.
    Keskin O
    J Biomol Struct Dyn; 2002 Dec; 20(3):333-45. PubMed ID: 12437372
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinematic Flexibility Analysis: Hydrogen Bonding Patterns Impart a Spatial Hierarchy of Protein Motion.
    Budday D; Leyendecker S; van den Bedem H
    J Chem Inf Model; 2018 Oct; 58(10):2108-2122. PubMed ID: 30240209
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Calculation of electrostatic interaction energies in molecular dimers from atomic multipole moments obtained by different methods of electron density partitioning.
    Volkov A; Coppens P
    J Comput Chem; 2004 May; 25(7):921-34. PubMed ID: 15027105
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Folding catalysis by transient coordination of Zn2+ to the Cu ligands of the ALS-associated enzyme Cu/Zn superoxide dismutase 1.
    Leinartaite L; Saraboji K; Nordlund A; Logan DT; Oliveberg M
    J Am Chem Soc; 2010 Sep; 132(38):13495-504. PubMed ID: 20822138
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanism and atomic structure of superoxide dismutase.
    Roberts VA; Fisher CL; Redford SM; McRee DE; Parge HE; Getzoff ED; Tainer JA
    Free Radic Res Commun; 1991; 12-13 Pt 1():269-78. PubMed ID: 1649094
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.