These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
339 related articles for article (PubMed ID: 22790248)
1. Reliability of longitudinal brain volume loss measurements between 2 sites in patients with multiple sclerosis: comparison of 7 quantification techniques. Durand-Dubief F; Belaroussi B; Armspach JP; Dufour M; Roggerone S; Vukusic S; Hannoun S; Sappey-Marinier D; Confavreux C; Cotton F AJNR Am J Neuroradiol; 2012 Nov; 33(10):1918-24. PubMed ID: 22790248 [TBL] [Abstract][Full Text] [Related]
2. Volume measurements of individual muscles in human quadriceps femoris using atlas-based segmentation approaches. Le Troter A; Fouré A; Guye M; Confort-Gouny S; Mattei JP; Gondin J; Salort-Campana E; Bendahan D MAGMA; 2016 Apr; 29(2):245-57. PubMed ID: 26983429 [TBL] [Abstract][Full Text] [Related]
3. Hippocampal volume change measurement: quantitative assessment of the reproducibility of expert manual outlining and the automated methods FreeSurfer and FIRST. Mulder ER; de Jong RA; Knol DL; van Schijndel RA; Cover KS; Visser PJ; Barkhof F; Vrenken H; Neuroimage; 2014 May; 92():169-81. PubMed ID: 24521851 [TBL] [Abstract][Full Text] [Related]
4. Automated determination of brain parenchymal fraction in multiple sclerosis. Vågberg M; Lindqvist T; Ambarki K; Warntjes JB; Sundström P; Birgander R; Svenningsson A AJNR Am J Neuroradiol; 2013 Mar; 34(3):498-504. PubMed ID: 22976234 [TBL] [Abstract][Full Text] [Related]
5. SIENA-XL for improving the assessment of gray and white matter volume changes on brain MRI. Battaglini M; Jenkinson M; De Stefano N; Hum Brain Mapp; 2018 Mar; 39(3):1063-1077. PubMed ID: 29222814 [TBL] [Abstract][Full Text] [Related]
6. Subcortical gray matter segmentation and voxel-based analysis using transverse relaxation and quantitative susceptibility mapping with application to multiple sclerosis. Cobzas D; Sun H; Walsh AJ; Lebel RM; Blevins G; Wilman AH J Magn Reson Imaging; 2015 Dec; 42(6):1601-10. PubMed ID: 25980643 [TBL] [Abstract][Full Text] [Related]
7. Repeatability and reproducibility of FreeSurfer, FSL-SIENAX and SPM brain volumetric measurements and the effect of lesion filling in multiple sclerosis. Guo C; Ferreira D; Fink K; Westman E; Granberg T Eur Radiol; 2019 Mar; 29(3):1355-1364. PubMed ID: 30242503 [TBL] [Abstract][Full Text] [Related]
8. Agreement of MSmetrix with established methods for measuring cross-sectional and longitudinal brain atrophy. Steenwijk MD; Amiri H; Schoonheim MM; de Sitter A; Barkhof F; Pouwels PJW; Vrenken H Neuroimage Clin; 2017; 15():843-853. PubMed ID: 28794970 [TBL] [Abstract][Full Text] [Related]
9. Use of simulated atrophy for performance analysis of brain atrophy estimation approaches. Sharma S; Noblet V; Rousseau F; Heitz F; Rumbach L; Armspach JP Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):566-74. PubMed ID: 20426157 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of automated techniques for the quantification of grey matter atrophy in patients with multiple sclerosis. Derakhshan M; Caramanos Z; Giacomini PS; Narayanan S; Maranzano J; Francis SJ; Arnold DL; Collins DL Neuroimage; 2010 Oct; 52(4):1261-7. PubMed ID: 20483380 [TBL] [Abstract][Full Text] [Related]
11. Accuracy assessment of global and local atrophy measurement techniques with realistic simulated longitudinal data. Camara O; Scahill RI; Schnabel JA; Crum WR; Ridgway GR; Hill DL; Fox NC Med Image Comput Comput Assist Interv; 2007; 10(Pt 2):785-92. PubMed ID: 18044640 [TBL] [Abstract][Full Text] [Related]
12. Quantification of global cerebral atrophy in multiple sclerosis from 3T MRI using SPM: the role of misclassification errors. Dell'Oglio E; Ceccarelli A; Glanz BI; Healy BC; Tauhid S; Arora A; Saravanan N; Bruha MJ; Vartanian AV; Dupuy SL; Benedict RHB; Bakshi R; Neema M J Neuroimaging; 2015; 25(2):191-199. PubMed ID: 25523616 [TBL] [Abstract][Full Text] [Related]
13. Segmentation of brain magnetic resonance images for measurement of gray matter atrophy in multiple sclerosis patients. Nakamura K; Fisher E Neuroimage; 2009 Feb; 44(3):769-76. PubMed ID: 19007895 [TBL] [Abstract][Full Text] [Related]
14. Spatial decision forests for MS lesion segmentation in multi-channel MR images. Geremia E; Menze BH; Clatz O; Konukoglu E; Criminisi A; Ayache N Med Image Comput Comput Assist Interv; 2010; 13(Pt 1):111-8. PubMed ID: 20879221 [TBL] [Abstract][Full Text] [Related]
15. CLASSIC: consistent longitudinal alignment and segmentation for serial image computing. Xue Z; Shen D; Davatzikos C Inf Process Med Imaging; 2005; 19():101-13. PubMed ID: 17354688 [TBL] [Abstract][Full Text] [Related]
16. Disease modeling in multiple sclerosis: assessment and quantification of sources of variability in brain parenchymal fraction measurements. Sampat MP; Healy BC; Meier DS; Dell'Oglio E; Liguori M; Guttmann CR Neuroimage; 2010 Oct; 52(4):1367-73. PubMed ID: 20362675 [TBL] [Abstract][Full Text] [Related]
17. Segmentation of subtraction images for the measurement of lesion change in multiple sclerosis. Duan Y; Hildenbrand PG; Sampat MP; Tate DF; Csapo I; Moraal B; Bakshi R; Barkhof F; Meier DS; Guttmann CR AJNR Am J Neuroradiol; 2008 Feb; 29(2):340-6. PubMed ID: 18272569 [TBL] [Abstract][Full Text] [Related]
18. Agreement between different input image types in brain atrophy measurement in multiple sclerosis using SIENAX and SIENA. Neacsu V; Jasperse B; Korteweg T; Knol DL; Valsasina P; Filippi M; Barkhof F; Rovaris M; Vrenken H; J Magn Reson Imaging; 2008 Sep; 28(3):559-65. PubMed ID: 18777529 [TBL] [Abstract][Full Text] [Related]