BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 22790379)

  • 21. Inhibition of lipase-catalyzed hydrolysis of emulsified triglyceride oils by low-molecular weight surfactants under simulated gastrointestinal conditions.
    Li Y; McClements DJ
    Eur J Pharm Biopharm; 2011 Oct; 79(2):423-31. PubMed ID: 21443951
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stabilization of model beverage cloud emulsions using protein-polysaccharide electrostatic complexes formed at the oil-water interface.
    Harnsilawat T; Pongsawatmanit R; McClements DJ
    J Agric Food Chem; 2006 Jul; 54(15):5540-7. PubMed ID: 16848543
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancement of carotenoid bioaccessibility from carrots using excipient emulsions: influence of particle size of digestible lipid droplets.
    Zhang R; Zhang Z; Zou L; Xiao H; Zhang G; Decker EA; McClements DJ
    Food Funct; 2016 Jan; 7(1):93-103. PubMed ID: 26583923
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of dietary fibers [methyl cellulose, chitosan, and pectin] on digestion of lipids under simulated gastrointestinal conditions.
    Espinal-Ruiz M; Parada-Alfonso F; Restrepo-Sánchez LP; Narváez-Cuenca CE; McClements DJ
    Food Funct; 2014 Dec; 5(12):3083-95. PubMed ID: 25312704
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of calcium-induced droplet heteroaggregation on the physicochemical properties of oppositely charged lactoferrin coated lutein droplets and whey protein isolate-coated DHA droplets.
    Li X; Wang X; Xu D; Cao Y; Wang S; Wang B; Wang C; Sun B
    Food Funct; 2017 Aug; 8(8):2748-2759. PubMed ID: 28702650
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structuring food emulsions in the gastrointestinal tract to modify lipid digestion.
    Singh H; Ye A; Horne D
    Prog Lipid Res; 2009 Mar; 48(2):92-100. PubMed ID: 19116160
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Controlling the functional performance of emulsion-based delivery systems using multi-component biopolymer coatings.
    Li Y; Hu M; Xiao H; Du Y; Decker EA; McClements DJ
    Eur J Pharm Biopharm; 2010 Sep; 76(1):38-47. PubMed ID: 20470883
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of interfacial composition on emulsion digestion and rate of lipid hydrolysis using different in vitro digestion models.
    Malaki Nik A; Wright AJ; Corredig M
    Colloids Surf B Biointerfaces; 2011 Apr; 83(2):321-30. PubMed ID: 21194901
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Theoretical stability maps for guiding preparation of emulsions stabilized by protein-polysaccharide interfacial complexes.
    Cho YH; McClements DJ
    Langmuir; 2009 Jun; 25(12):6649-57. PubMed ID: 19432398
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stability and digestibility of one- or bi-layered medium-chain triglyceride emulsions with gum Arabic and whey protein isolates by pancreatic lipase in vitro.
    Yao X; Chen Y; Shu M; Zhang K; Gao Z; Kuang Y; Fang Y; Nishinari K; Phillips GO; Jiang F
    Food Funct; 2018 Feb; 9(2):1017-1027. PubMed ID: 29349463
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of proteins in oil-in-water emulsions on the stability of lipid hydroperoxides.
    Kellerby SS; McClements DJ; Decker EA
    J Agric Food Chem; 2006 Oct; 54(20):7879-84. PubMed ID: 17002465
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of protein concentration and order of addition on thermal stability of beta-lactoglobulin stabilized n-hexadecane oil-in-water emulsions at neutral pH.
    Kim HJ; Decker EA; McClements DJ
    Langmuir; 2005 Jan; 21(1):134-9. PubMed ID: 15620294
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physicochemical behaviour of WPI-stabilized emulsions in in vitro gastric and intestinal conditions.
    Li J; Ye A; Lee SJ; Singh H
    Colloids Surf B Biointerfaces; 2013 Nov; 111():80-7. PubMed ID: 23792544
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of iota-carrageenan on droplet flocculation of beta-lactoglobulin-stabilized oil-in-water emulsions during thermal processing.
    Gu YS; Decker EA; McClements DJ
    Langmuir; 2004 Oct; 20(22):9565-70. PubMed ID: 15491187
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impact of electrostatic interactions on formation and stability of emulsions containing oil droplets coated by beta-lactoglobulin-pectin complexes.
    Guzey D; McClements DJ
    J Agric Food Chem; 2007 Jan; 55(2):475-85. PubMed ID: 17227082
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interfacial engineering using mixed protein systems: emulsion-based delivery systems for encapsulation and stabilization of β-carotene.
    Mao Y; Dubot M; Xiao H; McClements DJ
    J Agric Food Chem; 2013 May; 61(21):5163-9. PubMed ID: 23647430
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Production and characterization of oil-in-water emulsions containing droplets stabilized by beta-lactoglobulin-pectin membranes.
    Moreau L; Kim HJ; Decker EA; McClements DJ
    J Agric Food Chem; 2003 Oct; 51(22):6612-7. PubMed ID: 14558785
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of Dairy Emulsifier Type and Lipid Droplet Size on Gastrointestinal Fate of Model Emulsions: In Vitro Digestion Study.
    Liang L; Zhang X; Wang X; Jin Q; McClements DJ
    J Agric Food Chem; 2018 Sep; 66(37):9761-9769. PubMed ID: 30173508
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Controlling lipid nanoemulsion digestion using nanolaminated biopolymer coatings.
    Li Y; Hu M; Du Y; McClements DJ
    J Microencapsul; 2011; 28(3):166-75. PubMed ID: 21425942
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improvement of stability of oil-in-water emulsions containing caseinate-coated droplets by addition of sodium alginate.
    Pallandre S; Decker EA; McClements DJ
    J Food Sci; 2007 Nov; 72(9):E518-24. PubMed ID: 18034721
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.