BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 22790392)

  • 1. Acoustic cue integration in speech intonation recognition with cochlear implants.
    Peng SC; Chatterjee M; Lu N
    Trends Amplif; 2012 Jun; 16(2):67-82. PubMed ID: 22790392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of cooperating and conflicting cues on speech intonation recognition by cochlear implant users and normal hearing listeners.
    Peng SC; Lu N; Chatterjee M
    Audiol Neurootol; 2009; 14(5):327-37. PubMed ID: 19372651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fundamental frequency is critical to speech perception in noise in combined acoustic and electric hearing.
    Carroll J; Tiaden S; Zeng FG
    J Acoust Soc Am; 2011 Oct; 130(4):2054-62. PubMed ID: 21973360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Processing F0 with cochlear implants: Modulation frequency discrimination and speech intonation recognition.
    Chatterjee M; Peng SC
    Hear Res; 2008 Jan; 235(1-2):143-56. PubMed ID: 18093766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using speech sounds to test functional spectral resolution in listeners with cochlear implants.
    Winn MB; Litovsky RY
    J Acoust Soc Am; 2015 Mar; 137(3):1430-42. PubMed ID: 25786954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rate and onset cues can improve cochlear implant synthetic vowel recognition in noise.
    Mc Laughlin M; Reilly RB; Zeng FG
    J Acoust Soc Am; 2013 Mar; 133(3):1546-60. PubMed ID: 23464025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Masking release with changing fundamental frequency: Electric acoustic stimulation resembles normal hearing subjects.
    Auinger AB; Riss D; Liepins R; Rader T; Keck T; Keintzel T; Kaider A; Baumgartner WD; Gstoettner W; Arnoldner C
    Hear Res; 2017 Jul; 350():226-234. PubMed ID: 28527538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Psychoacoustic and phoneme identification measures in cochlear-implant and normal-hearing listeners.
    Goldsworthy RL; Delhorne LA; Braida LD; Reed CM
    Trends Amplif; 2013 Mar; 17(1):27-44. PubMed ID: 23429419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Weighting of Prosodic and Lexical-Semantic Cues for Emotion Identification in Spectrally Degraded Speech and With Cochlear Implants.
    Richter ME; Chatterjee M
    Ear Hear; 2021 Nov-Dec 01; 42(6):1727-1740. PubMed ID: 34294630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electric and acoustic harmonic integration predicts speech-in-noise performance in hybrid cochlear implant users.
    Bonnard D; Schwalje A; Gantz B; Choi I
    Hear Res; 2018 Sep; 367():223-230. PubMed ID: 29980380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voice emotion recognition by cochlear-implanted children and their normally-hearing peers.
    Chatterjee M; Zion DJ; Deroche ML; Burianek BA; Limb CJ; Goren AP; Kulkarni AM; Christensen JA
    Hear Res; 2015 Apr; 322():151-62. PubMed ID: 25448167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pupillometry Reveals That Context Benefit in Speech Perception Can Be Disrupted by Later-Occurring Sounds, Especially in Listeners With Cochlear Implants.
    Winn MB; Moore AN
    Trends Hear; 2018; 22():2331216518808962. PubMed ID: 30375282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequential stream segregation in normally-hearing and cochlear-implant listeners.
    Tejani VD; Schvartz-Leyzac KC; Chatterjee M
    J Acoust Soc Am; 2017 Jan; 141(1):50. PubMed ID: 28147600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binaural cue sensitivity in cochlear implant recipients with acoustic hearing preservation.
    Gifford RH; Stecker GC
    Hear Res; 2020 May; 390():107929. PubMed ID: 32182551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contour identification with pitch and loudness cues using cochlear implants.
    Luo X; Masterson ME; Wu CC
    J Acoust Soc Am; 2014 Jan; 135(1):EL8-14. PubMed ID: 24437857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vowel identification by cochlear implant users: contributions of static and dynamic spectral cues.
    Donaldson GS; Rogers CL; Cardenas ES; Russell BA; Hanna NH
    J Acoust Soc Am; 2013 Oct; 134(4):3021-8. PubMed ID: 24116437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Consonant recognition as a function of the number of stimulation channels in the Hybrid short-electrode cochlear implant.
    Reiss LA; Turner CW; Karsten SA; Erenberg SR; Taylor J; Gantz BJ
    J Acoust Soc Am; 2012 Nov; 132(5):3406-17. PubMed ID: 23145621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Speech perception in simulated electric hearing exploits information-bearing acoustic change.
    Stilp CE; Goupell MJ; Kluender KR
    J Acoust Soc Am; 2013 Feb; 133(2):EL136-41. PubMed ID: 23363194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Top-down restoration of speech in cochlear-implant users.
    Bhargava P; Gaudrain E; Başkent D
    Hear Res; 2014 Mar; 309():113-23. PubMed ID: 24368138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategic perceptual weighting of acoustic cues for word stress in listeners with cochlear implants, acoustic hearing, or simulated bimodal hearing.
    Fleming JT; Winn MB
    J Acoust Soc Am; 2022 Sep; 152(3):1300. PubMed ID: 36182279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.