These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 22790393)

  • 1. Removal and reduction of chromium by Pseudomonas spp. and their correlation to rhamnolipid production.
    Ozturk S; Kaya T; Aslim B; Tan S
    J Hazard Mater; 2012 Sep; 231-232():64-9. PubMed ID: 22790393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous Cr(VI) reduction and phenol degradation in pure cultures of Pseudomonas aeruginosa CCTCC AB91095.
    Song H; Liu Y; Xu W; Zeng G; Aibibu N; Xu L; Chen B
    Bioresour Technol; 2009 Nov; 100(21):5079-84. PubMed ID: 19541478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rhamnolipid production by pseudomonas aeruginosa GIM 32 using different substrates including molasses distillery wastewater.
    Li AH; Xu MY; Sun W; Sun GP
    Appl Biochem Biotechnol; 2011 Mar; 163(5):600-11. PubMed ID: 20830582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utilization of Agro-Industry Residue for Rhamnolipid Production by P. aeruginosa AMB AS7 and Its Application in Chromium Removal.
    Samykannu M; Achary A
    Appl Biochem Biotechnol; 2017 Sep; 183(1):70-90. PubMed ID: 28161866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved production of biosurfactant with newly isolated Pseudomonas aeruginosa S2.
    Chen SY; Lu WB; Wei YH; Chen WM; Chang JS
    Biotechnol Prog; 2007; 23(3):661-6. PubMed ID: 17461551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of rhamnolipid-biosurfactant on cell surface of Pseudomonas aeruginosa.
    Sotirova A; Spasova D; Vasileva-Tonkova E; Galabova D
    Microbiol Res; 2009; 164(3):297-303. PubMed ID: 17416508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. lux-marked Pseudomonas aeruginosa lipopolysaccharide production in the presence of rhamnolipid.
    Chen G; Zhu H
    Colloids Surf B Biointerfaces; 2005 Mar; 41(1):43-8. PubMed ID: 15698755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pseudomonas aeruginosa PAO1 as a model for rhamnolipid production in bioreactor systems.
    Müller MM; Hörmann B; Syldatk C; Hausmann R
    Appl Microbiol Biotechnol; 2010 Jun; 87(1):167-74. PubMed ID: 20217074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioremediation of toxic chromium from electroplating effluent by chromate-reducing Pseudomonas aeruginosa A2Chr in two bioreactors.
    Ganguli A; Tripathi AK
    Appl Microbiol Biotechnol; 2002 Mar; 58(3):416-20. PubMed ID: 11935196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of rhamnolipid biosurfactants produced by recombinant Pseudomonas aeruginosa strain DAB with removal of crude oil.
    He C; Dong W; Li J; Li Y; Huang C; Ma Y
    Biotechnol Lett; 2017 Sep; 39(9):1381-1388. PubMed ID: 28600649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous Cr(VI) removal and 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) biodegradation by Pseudomonas aeruginosa in liquid medium.
    Tang S; Yin H; Zhou S; Chen S; Peng H; Liu Z; Dang Z
    Chemosphere; 2016 May; 150():24-32. PubMed ID: 26891353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced crude oil biodegradation and rhamnolipid production by Pseudomonas stutzeri strain G11 in the presence of Tween-80 and Triton X-100.
    Celik GY; Aslim B; Beyatli Y
    J Environ Biol; 2008 Nov; 29(6):867-70. PubMed ID: 19297982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic relationship between polyhydroxyalkanoic acid and rhamnolipid synthesis in Pseudomonas aeruginosa: comparative ¹³C NMR analysis of the products in wild-type and mutants.
    Choi MH; Xu J; Gutierrez M; Yoo T; Cho YH; Yoon SC
    J Biotechnol; 2011 Jan; 151(1):30-42. PubMed ID: 21029757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterologous production of Pseudomonas aeruginosa rhamnolipid under anaerobic conditions for microbial enhanced oil recovery.
    Zhao F; Shi R; Zhao J; Li G; Bai X; Han S; Zhang Y
    J Appl Microbiol; 2015 Feb; 118(2):379-89. PubMed ID: 25410277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental conditions affecting exopolysaccharide production by Pseudomonas aeruginosa, Micrococcus sp., and Ochrobactrum sp.
    Kiliç NK; Dönmez G
    J Hazard Mater; 2008 Jun; 154(1-3):1019-24. PubMed ID: 18155834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhamnolipid production by Pseudomonas aeruginosa engineered with the Vitreoscilla hemoglobin gene.
    Kahraman H; Erenler SO
    Prikl Biokhim Mikrobiol; 2012; 48(2):212-7. PubMed ID: 22586915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cr(VI) reduction and Cr(III) immobilization by resting cells of Pseudomonas aeruginosa CCTCC AB93066: spectroscopic, microscopic, and mass balance analysis.
    Kang C; Wu P; Li L; Yu L; Ruan B; Gong B; Zhu N
    Environ Sci Pollut Res Int; 2017 Feb; 24(6):5949-5963. PubMed ID: 28070813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyridine-2,6-bis(thiocarboxylic acid) produced by Pseudomonas stutzeri KC reduces chromium(VI) and precipitates mercury, cadmium, lead and arsenic.
    Zawadzka AM; Crawford RL; Paszczynski AJ
    Biometals; 2007 Apr; 20(2):145-58. PubMed ID: 16900399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic changes in response to chromium(VI) toxicity in Pseudomonas aeruginosa.
    Kiliç NK; Stensballe A; Otzen DE; Dönmez G
    Bioresour Technol; 2010 Apr; 101(7):2134-40. PubMed ID: 19945860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosurfactant production by Pseudomonas aeruginosain kefir and fish meal.
    Kaskatepe B; Yildiz S; Gumustas M; Ozkan SA
    Braz J Microbiol; 2015; 46(3):855-9. PubMed ID: 26413070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.