These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 22790397)

  • 1. The clpB gene is involved in the stress response of Myxococcus xanthus during vegetative growth and development.
    Pan H; Luan J; He X; Lux R; Shi W
    Microbiology (Reading); 2012 Sep; 158(Pt 9):2336-2343. PubMed ID: 22790397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Clp/Hsp100 chaperone functions in Myxococcus xanthus sporulation and self-organization.
    Yan J; Garza AG; Bradley MD; Welch RD
    J Bacteriol; 2012 Apr; 194(7):1689-96. PubMed ID: 22287524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide analysis of rice ClpB/HSP100, ClpC and ClpD genes.
    Singh A; Singh U; Mittal D; Grover A
    BMC Genomics; 2010 Feb; 11():95. PubMed ID: 20141629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SigB, SigC, and SigE from Myxococcus xanthus homologous to sigma32 are not required for heat shock response but for multicellular differentiation.
    Ueki T; Inouye S
    J Mol Microbiol Biotechnol; 2001 Apr; 3(2):287-93. PubMed ID: 11321585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Arabidopsis ClpB/Hsp100 family of proteins: chaperones for stress and chloroplast development.
    Lee U; Rioflorido I; Hong SW; Larkindale J; Waters ER; Vierling E
    Plant J; 2007 Jan; 49(1):115-27. PubMed ID: 17144892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ClpB/Hsp100 proteins and heat stress tolerance in plants.
    Mishra RC; Grover A
    Crit Rev Biotechnol; 2016 Oct; 36(5):862-74. PubMed ID: 26121931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence that a chaperone-usher-like pathway of Myxococcus xanthus functions in spore coat formation.
    Leng X; Zhu W; Jin J; Mao X
    Microbiology (Reading); 2011 Jul; 157(Pt 7):1886-1896. PubMed ID: 21454366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A ClpB chaperone knockout mutant of Mesorhizobium ciceri shows a delay in the root nodulation of chickpea plants.
    Brígido C; Robledo M; Menéndez E; Mateos PF; Oliveira S
    Mol Plant Microbe Interact; 2012 Dec; 25(12):1594-604. PubMed ID: 23134119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinformatic and Functional Characterization of Hsp70s in Myxococcus xanthus.
    Pan Z; Zhang Z; Zhuo L; Wan TY; Li YZ
    mSphere; 2021 May; 6(3):. PubMed ID: 34011688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. clpB, a novel member of the Listeria monocytogenes CtsR regulon, is involved in virulence but not in general stress tolerance.
    Chastanet A; Derre I; Nair S; Msadek T
    J Bacteriol; 2004 Feb; 186(4):1165-74. PubMed ID: 14762012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The lonD gene is homologous to the lon gene encoding an ATP-dependent protease and is essential for the development of Myxococcus xanthus.
    Tojo N; Inouye S; Komano T
    J Bacteriol; 1993 Jul; 175(14):4545-9. PubMed ID: 8331083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Symbiotic Performance of Chickpea Rhizobia Can Be Improved by Additional Copies of the clpB Chaperone Gene.
    Paço A; Brígido C; Alexandre A; Mateos PF; Oliveira S
    PLoS One; 2016; 11(2):e0148221. PubMed ID: 26845770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new sigma factor, SigD, essential for stationary phase is also required for multicellular differentiation in Myxococcus xanthus.
    Ueki T; Inouye S
    Genes Cells; 1998 Jun; 3(6):371-85. PubMed ID: 9734783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning and nucleotide sequence of the Myxococcus xanthus lon gene: indispensability of lon for vegetative growth.
    Tojo N; Inouye S; Komano T
    J Bacteriol; 1993 Apr; 175(8):2271-7. PubMed ID: 8468287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Hsp70 (DnaK-DnaJ-GrpE) and Hsp100 (ClpA and ClpB) chaperones in refolding and increased thermal stability of bacterial luciferases in Escherichia coli cells.
    Zavilgelsky GB; Kotova VY; Mazhul' MM; Manukhov IV
    Biochemistry (Mosc); 2002 Sep; 67(9):986-92. PubMed ID: 12387711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the AAA+ chaperone clpB gene and stress-response expression in the halophilic methanogenic archaeon Methanohalophilus portucalensis.
    Shih CJ; Lai MC
    Microbiology (Reading); 2007 Aug; 153(Pt 8):2572-2583. PubMed ID: 17660421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The clpB gene of Bifidobacterium breve UCC 2003: transcriptional analysis and first insights into stress induction.
    Ventura M; Kenny JG; Zhang Z; Fitzgerald GF; van Sinderen D
    Microbiology (Reading); 2005 Sep; 151(Pt 9):2861-2872. PubMed ID: 16151199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inactivation of clpB in the pathogen Leptospira interrogans reduces virulence and resistance to stress conditions.
    Lourdault K; Cerqueira GM; Wunder EA; Picardeau M
    Infect Immun; 2011 Sep; 79(9):3711-7. PubMed ID: 21730091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ClpB cooperates with DnaK, DnaJ, and GrpE in suppressing protein aggregation. A novel multi-chaperone system from Escherichia coli.
    Zolkiewski M
    J Biol Chem; 1999 Oct; 274(40):28083-6. PubMed ID: 10497158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ClpB/Hsp104 molecular chaperone-a protein disaggregating machine.
    Lee S; Sowa ME; Choi JM; Tsai FT
    J Struct Biol; 2004; 146(1-2):99-105. PubMed ID: 15037241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.