These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 2279069)

  • 1. A hierarchical "nesting" approach to describe the stability of alpha helices with side-chain interactions.
    Robert CH
    Biopolymers; 1990; 30(3-4):335-47. PubMed ID: 2279069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free energy determinants of secondary structure formation: I. alpha-Helices.
    Yang AS; Honig B
    J Mol Biol; 1995 Sep; 252(3):351-65. PubMed ID: 7563056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The helix-coil transition in heterogeneous peptides with specific side-chain interactions: theory and comparison with CD spectral data.
    Gans PJ; Lyu PC; Manning MC; Woody RW; Kallenbach NR
    Biopolymers; 1991 Nov; 31(13):1605-14. PubMed ID: 1814507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissection of the de novo designed peptide alpha t alpha: stability and properties of the intact molecule and its constituent helices.
    Fezoui Y; Braswell EH; Xian W; Osterhout JJ
    Biochemistry; 1999 Mar; 38(9):2796-804. PubMed ID: 10052951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the influence of sequence-dependent interactions upon alpha-helix stability in alanine-based linear peptides.
    Jacchieri SG; Richards NG
    Biopolymers; 1993 Jun; 33(6):971-84. PubMed ID: 8318669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The occurrence of C--H...O hydrogen bonds in alpha-helices and helix termini in globular proteins.
    Manikandan K; Ramakumar S
    Proteins; 2004 Sep; 56(4):768-81. PubMed ID: 15281129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intersegment interactions and helix-coil transition within the generalized model of polypeptide chains approach.
    Badasyan AV; Hayrapetyan GN; Tonoyan ShA; Mamasakhlisov YSh; Benight AS; Morozov VF
    J Chem Phys; 2009 Sep; 131(11):115104. PubMed ID: 19778153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beyond the nearest-neighbor Zimm-Bragg model for helix-coil transition in peptides.
    Murza A; Kubelka J
    Biopolymers; 2009 Feb; 91(2):120-31. PubMed ID: 18814306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The helix-coil transition revisited.
    Chen Y; Zhou Y; Ding J
    Proteins; 2007 Oct; 69(1):58-68. PubMed ID: 17596846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical reasons for secondary structure stability: alpha-helices in short peptides.
    Finkelstein AV; Badretdinov AY; Ptitsyn OB
    Proteins; 1991; 10(4):287-99. PubMed ID: 1946339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilization of alpha-helix structure by polar side-chain interactions: complex salt bridges, cation-pi interactions, and C-H em leader O H-bonds.
    Shi Z; Olson CA; Bell AJ; Kallenbach NR
    Biopolymers; 2001; 60(5):366-80. PubMed ID: 12115147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Helix propensities are identical in proteins and peptides.
    Myers JK; Pace CN; Scholtz JM
    Biochemistry; 1997 Sep; 36(36):10923-9. PubMed ID: 9283083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alpha-helix-forming propensities in peptides and proteins.
    Creamer TP; Rose GD
    Proteins; 1994 Jun; 19(2):85-97. PubMed ID: 8090712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of interhelical ionic interactions in controlling protein folding and stability. De novo designed synthetic two-stranded alpha-helical coiled-coils.
    Zhou NE; Kay CM; Hodges RS
    J Mol Biol; 1994 Apr; 237(4):500-12. PubMed ID: 8151708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of laminin chain assembly into a triple-stranded coiled-coil structure.
    Nomizu M; Utani A; Beck K; Otaka A; Roller PP; Yamada Y
    Biochemistry; 1996 Mar; 35(9):2885-93. PubMed ID: 8608125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tests of the helix dipole model for stabilization of alpha-helices.
    Shoemaker KR; Kim PS; York EJ; Stewart JM; Baldwin RL
    Nature; 1987 Apr 9-15; 326(6113):563-7. PubMed ID: 3561498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elucidating the folding problem of alpha-helices: local motifs, long-range electrostatics, ionic-strength dependence and prediction of NMR parameters.
    Lacroix E; Viguera AR; Serrano L
    J Mol Biol; 1998 Nov; 284(1):173-91. PubMed ID: 9811549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alpha helix capping in synthetic model peptides by reciprocal side chain-main chain interactions: evidence for an N terminal "capping box".
    Zhou HX; Lyu P; Wemmer DE; Kallenbach NR
    Proteins; 1994 Jan; 18(1):1-7. PubMed ID: 8146119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors that affect the stabilization of alpha-helices in short peptides by a capping box.
    Petukhov M; Yumoto N; Murase S; Onmura R; Yoshikawa S
    Biochemistry; 1996 Jan; 35(2):387-97. PubMed ID: 8555208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of stable alpha-helices using global sequence optimization.
    Petukhov M; Tatsu Y; Tamaki K; Murase S; Uekawa H; Yoshikawa S; Serrano L; Yumoto N
    J Pept Sci; 2009 May; 15(5):359-65. PubMed ID: 19222027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.