These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 22791043)
1. Genetic diversity and ecological evaluation of fluorescent pseudomonads isolated from the leaves and roots of potato plants. Someya N; Morohoshi T; Ikeda T; Tsuchiya K; Ikeda S Microbes Environ; 2012; 27(2):122-6. PubMed ID: 22791043 [TBL] [Abstract][Full Text] [Related]
2. Genotypic and phenotypic diversity of PGPR fluorescent pseudomonads isolated from the rhizosphere of sugarcane (Saccharum officinarum L.). Rameshkumar N; Ayyadurai N; Kayalvizhi N; Gunasekaran P J Microbiol Biotechnol; 2012 Jan; 22(1):13-24. PubMed ID: 22297215 [TBL] [Abstract][Full Text] [Related]
3. Community Analysis of Root- and Tuber-Associated Bacteria in Field-Grown Potato Plants Harboring Different Resistance Levels against Common Scab. Kobayashi A; Kobayashi YO; Someya N; Ikeda S Microbes Environ; 2015; 30(4):301-9. PubMed ID: 26657303 [TBL] [Abstract][Full Text] [Related]
4. Molecular characterization of the bacterial community in a potato phytosphere. Someya N; Ohdaira Kobayashi Y; Tsuda S; Ikeda S Microbes Environ; 2013; 28(3):295-305. PubMed ID: 23748858 [TBL] [Abstract][Full Text] [Related]
5. Endophytic colonization of potato (Solanum tuberosum L.) by a novel competent bacterial endophyte, Pseudomonas putida strain P9, and its effect on associated bacterial communities. Andreote FD; de Araújo WL; de Azevedo JL; van Elsas JD; da Rocha UN; van Overbeek LS Appl Environ Microbiol; 2009 Jun; 75(11):3396-406. PubMed ID: 19329656 [TBL] [Abstract][Full Text] [Related]
6. Assessment of genetic and functional diversity of phosphate solubilizing fluorescent pseudomonads isolated from rhizospheric soil. Naik PR; Raman G; Narayanan KB; Sakthivel N BMC Microbiol; 2008 Dec; 8():230. PubMed ID: 19099598 [TBL] [Abstract][Full Text] [Related]
7. Pseudomonas cichorii as the causal agent of midrib rot, an emerging disease of greenhouse-grown butterhead lettuce in Flanders. Cottyn B; Heylen K; Heyrman J; Vanhouteghem K; Pauwelyn E; Bleyaert P; Van Vaerenbergh J; Höfte M; De Vos P; Maes M Syst Appl Microbiol; 2009 May; 32(3):211-25. PubMed ID: 19157742 [TBL] [Abstract][Full Text] [Related]
8. Diversity of Antibiotic Biosynthesis Gene-possessing Rhizospheric Fluorescent Pseudomonads in Japan and Their Biocontrol Efficacy. Someya N; Kubota M; Takeuchi K; Unno Y; Sakuraoka R; Morohoshi T Microbes Environ; 2020; 35(2):. PubMed ID: 32269203 [TBL] [Abstract][Full Text] [Related]
9. Mountain aspect influences the genetic clustering of psychrotolerant phosphate solubilizing Pseudomonads in the Uttarakhand Himalayas. Selvakumar G; Joshi P; Mishra PK; Bisht JK; Gupta HS Curr Microbiol; 2009 Oct; 59(4):432-8. PubMed ID: 19636619 [TBL] [Abstract][Full Text] [Related]
10. Phylogenetic diversity of fluorescent pseudomonads in agricultural soils from Korea. Kwon SW; Kim JS; Crowley DE; Lim CK Lett Appl Microbiol; 2005; 41(5):417-23. PubMed ID: 16238645 [TBL] [Abstract][Full Text] [Related]
11. Fluorescent pseudomonads harboring type III secretion genes are enriched in the mycorrhizosphere of Medicago truncatula. Viollet A; Corberand T; Mougel C; Robin A; Lemanceau P; Mazurier S FEMS Microbiol Ecol; 2011 Mar; 75(3):457-67. PubMed ID: 21204867 [TBL] [Abstract][Full Text] [Related]
12. Distribution and diversity of type III secretion system-like genes in saprophytic and phytopathogenic fluorescent pseudomonads. Mazurier S; Lemunier M; Siblot S; Mougel C; Lemanceau P FEMS Microbiol Ecol; 2004 Sep; 49(3):455-67. PubMed ID: 19712294 [TBL] [Abstract][Full Text] [Related]
13. Pyrroloquinoline quinone biosynthesis gene pqqC, a novel molecular marker for studying the phylogeny and diversity of phosphate-solubilizing pseudomonads. Meyer JB; Frapolli M; Keel C; Maurhofer M Appl Environ Microbiol; 2011 Oct; 77(20):7345-54. PubMed ID: 21856827 [TBL] [Abstract][Full Text] [Related]
14. Candidate nematicidal proteins in a new Pseudomonas veronii isolate identified by its antagonistic properties against Xiphinema index. Canchignia H; Altimira F; Montes C; Sánchez E; Tapia E; Miccono M; Espinoza D; Aguirre C; Seeger M; Prieto H J Gen Appl Microbiol; 2017 Mar; 63(1):11-21. PubMed ID: 27989999 [TBL] [Abstract][Full Text] [Related]
15. An rpoD gene sequence based evaluation of cultured Pseudomonas diversity on different growth media. Ghyselinck J; Coorevits A; Van Landschoot A; Samyn E; Heylen K; De Vos P Microbiology (Reading); 2013 Oct; 159(Pt 10):2097-2108. PubMed ID: 23920133 [TBL] [Abstract][Full Text] [Related]
16. Genetic and functional diversity among fluorescent pseudomonads isolated from the rhizosphere of banana. Naik PR; Sahoo N; Goswami D; Ayyadurai N; Sakthivel N Microb Ecol; 2008 Oct; 56(3):492-504. PubMed ID: 18347847 [TBL] [Abstract][Full Text] [Related]
17. Different bacterial populations associated with the roots and rhizosphere of rice incorporate plant-derived carbon. Hernández M; Dumont MG; Yuan Q; Conrad R Appl Environ Microbiol; 2015 Mar; 81(6):2244-53. PubMed ID: 25616793 [TBL] [Abstract][Full Text] [Related]
18. Assessment of genetic and functional relationship of antagonistic fluorescent pseudomonads of rice rhizosphere by repetitive sequence, protein coding sequence and functional gene analyses. Pathma J; Ayyadurai N; Sakthivel N J Microbiol; 2010 Dec; 48(6):715-27. PubMed ID: 21221925 [TBL] [Abstract][Full Text] [Related]
19. Pseudomonas lurida sp. nov., a fluorescent species associated with the phyllosphere of grasses. Behrendt U; Ulrich A; Schumann P; Meyer JM; Spröer C Int J Syst Evol Microbiol; 2007 May; 57(Pt 5):979-985. PubMed ID: 17473245 [TBL] [Abstract][Full Text] [Related]
20. Maize endophytic microbial-communities revealed by removing PCR and 16S rRNA sequencing and their synthetic applications to suppress maize banded leaf and sheath blight. Ali M; Ahmad Z; Ashraf MF; Dong W Microbiol Res; 2021 Jan; 242():126639. PubMed ID: 33191104 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]